
CHAPTER 11

SENSORY ADAPTATION

THE ENTROPIC INTERPRETATION OF ADAPTATION1

We continue, now, in our task of evaluating the fundamental entropy equation (9.20)/(10.1),

F = F(I, t ) = kH = 1
2 k ln(1 + β In/ t ) .     (11.1)

We recall from Chapter 3 (“The Weber Fraction: The Analogs”) the general process that is
employed in evaluating the function F(I, t ). In order to derive the law of sensation from F(I, t ), we set
t = t U = constant, and obtained Equation (10.3), the general equation embracing both logarithmic and
power laws of sensation. Now, in order to explore the principle of adaptation using the same
mathematical function, F(I, t ), we set I = IU = constant. That is, we explore the behavior of the
perceptual variable, F, and the entropy function, H, when a single, steady stimulus is applied to a
sensory receptor for a period of time, t. When we deal with stimuli applied for “long” periods of time
(for example, t > 1 s), as we do in this chapter, t may well refer to either the duration of the stimulus or
to the time since onset of the stimulus, since generally these times will be equal. However, in Chapter
13, when we shall deal with very brief stimuli, t will refer unequivocally to the time since stimulus
onset. For such brief stimuli, the ratio of time since onset to stimulus duration may exceed unity
substantially. For the longer stimuli treated in this chapter the ratio is, effectively, unity.

Since stimulus intensity, IU, is constant, we write2

λ = β (IU )n = constant,     (11.2)
analogous to (10.2).

Hence the equation

F = kH = 1
2 k ln(1 + λ /t ) ,     (11.3)

analogous to (10.3), describes the change in F with t for a constant stimulus. It is evident from Equation
(11.3) that when t is small, F is large, and as t becomes larger, F declines. This behavior describes the
process of sensory adaptation (see Chapter 3, Adaptation). It is well known that when F describes
subjective magnitude, such as the sensation of taste, this magnitude will sometimes increase briefly
after administration of the stimulus, and then decline. We deal with this early rise in sensation in a
preliminary way in Chapter 14. Until then, we concern ourselves solely with the declining phase of the
adaptation process.

There are both mathematical and physiological limitations governing the range of values taken by
the time variable, t. We recall from Equation (9.3) that

t = m / α ,

where α is a constant, greater than zero, and m is an integer, greater than zero, representing the number
of samples taken by a receptor of its stimulus population. It would seem that when m = 1, t takes on its
smallest value3 of 1/α. At the other extreme, there is almost certainly a maximum value for m that
characterizes each type of receptor. Maximum m would represent the greatest number of
sampling-values (intensity values) that a receptor could retain in its local “memory.” Although we do
not know from anatomical or physiological considerations exactly how great this number is, we do
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11. Sensory Adaptation 114

know that it must exist. For example, it is not likely that your pressure receptors are currently storing
the values of pressures applied 15 minutes ago. That is, the receptor’s memory is less than 15 minutes.
Some minimum and maximum for m must exist, but we cannot, at the moment, provide values for these
extremes.Q

If the maximum value for m (and hence, t ) is great enough, then, from Equation (11.3), F will tend
toward ln(1) = 0 — the case of complete adaptation, or adaptation to extinction. If, however, the
maximum value for m (and hence for t ) is somewhat smaller, F will fall to some level greater than zero,
and will not decrease further, corresponding to the case of incomplete adaptation. The entropy equation
(11.3) is valid only to the time when F first reaches its minimum value. Beyond this equilibration point,
we cannot use the entropy equation in its present form.

The theoretical graph of F vs. t is governed, then, by the ln-function (11.3). For small t, the function
falls steeply, and for large t, it falls gently toward zero. The characteristics of the curve differ markedly
from those of the exponential function, which is often used, empirically, to describe such adaptation
phenomena. The exponential function does not rise as sharply for small t, and descends more steeply
for larger t.

“ Adaptation” is often discussed together with “ fatigue,” some writers making a distinction between
the terms. Adaptation, as seen from the entropy perspective, has nothing whatever to do with fatigue.

Since F = kH, F is a “ mirror” of H. As H does, so F does. The entropic view of adaptation may be
inferred from the preliminary discussion given in Chapter 8 (Central Limit Theorem) and Chapter 9
(Maximum H as Potential Information). Referring to Equation (11.3) — When t is small (m small),
receptor uncertainty is great and the potential to receive information is high; when t is large (m large),
receptor uncertainty is reduced, and thus the potential to receive information is low or absent.
Adaptation, therefore, refers to the progressive acquisition of information (eradication of uncertainty).
When the maximum value of t for a given receptor is insufficient to reduce the H-function to zero,
adaptation will be incomplete. A receptor which has adapted to its fullest extent cannot receive further
information. When a receptor has adapted completely, it retains no further uncertainty about its
stimulus magnitude, leading to a rather dramatic conclusion: A receptor cannot perceive a certainty. If
the outcome to an event is completely certain, the receptor cannot perceive it.

The reader will notice that here, as elsewhere, I seem to have anthropomorphized the receptor,
relegating to it the capacity to be certain or uncertain, as if it possessed a mind. This view is, however,
incomplete. A receptor, as an isolated unit, cannot reasonably be expected to possess the potential for
certainty or uncertainty. I shall return later to this matter, but even then, I am afraid, my views may be
considered audacious.

Figure 11.1 Schematic diagram of an adaptation curve. The variable, F, represents either
impulse frequency in a sensory neuron or subjective magnitude of a stimulus. Fmax is the
maximum value obtainable by F. Sometimes one finds an early portion of the curve where F
rises with time (not shown here). This early rising phase can be detected neurophysiologically
and, occasionally, psychophysically, particularly with the chemical senses. Fmin, the minimum
value obtainable by F, is often not obtained during the course of the experiment, but rather, must
be estimated by means of an asymptote to the curve, as shown in the diagram. When Fmin is
equal to zero, adaptation is said to go to completion.
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11. Sensory Adaptation 115

The fall of F with t is illustrated schematically by the curves in Figure 3.2 and Figure 11.1. Again,
F, the perceptual variable, will be interpreted either as subjective magnitude (magnitude estimates) or
as impulse rate in a sensory neuron. However, we shall see in Chapter 13 that this dual interpretation of
F is, at best, an approximation. That is, F (subjective magnitude) is not precisely synchronous with F
(impulse rate). In fact the two types of curve are not even necessarily of exactly the same shape, as
discussed in note 1 of Chapter 13.

INFORMATION, RECEPTORS AND CATEGORICAL JUDGMENTS

From Equation (11.3),

H = 1
2 ln(1 + λ / t ) .     (11.4)

We have established, now, the existence of a minimum and maximum value of t, which can be
designated t0 and tmax, respectively.4 Since H(t ) is a monotone decreasing function of t, therefore,

Hmax = 1
2 ln(1 + λ / t0)     (11.5)

and
Hmin = 1

2 ln(1 + λ / tmax) .     (11.6)

Let
∆H = Hmax − Hmin .     (11.7)

Then ∆H is the difference between the receptor uncertainty at the beginning and end of the process
of adaptation. It is the reduction in potential information. That is, ∆H equals the quantity of information
received by the receptor during the process of adaptation. Since F = kH, therefore,

∆H = ∆F / k .     (11.8)

That is, the excursion of the adaptation curve divided by the scaling constant, k, is equal to the total
information received by the receptor during the adaptation process. Moreover, both quantities k and ∆F,
on the right-hand side of (11.8) can be measured. Since experimental adaptation data can be fitted to
Equation (11.3), we can obtain a value for the constant, k; since

∆F = Fmax − Fmin ,     (11.9)

we can measure ∆F by taking the difference between the highest and lowest values on the adaptation
curve. We can, thereby, measure ∆H using Equation (11.8) to obtain a value in natural units of
information per stimulus. Examples of this technique will follow.

We might just note at this point that there is an approximation to Equation (11.7) which not only
permits one to estimate the value of ∆H from visual inspection of an adaptation curve, but seems to
provide some insight into ∆H as well (cf. Chapter 8, The Central Limit Theorem). Let us assume
(rightly or wrongly) that we can use the “ Fechner approximation,” λ/tmax >> 1. Admittedly, use of this
approximation will sometimes lead us astray. Since to < tmax, it will also be true that λ / to >> 1.
Introducing these approximations into Equations (11.5) and (11.6),

Hmax S 1
2 ln(λ / to)

and
Hmin S 1

2 ln(λ / tmax) ,

so that, from Equation (11.7),
∆H S 1

2 ln(λ / to) − 1
2 ln(λ / tmax) ,

∆H = 1
2 ln(tmax / to) ,
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or

∆H = ln tmax / to .     (11.10)

This equation was demonstrated by the author (1981, 1984). It is useful because the right-hand side
can be approximately evaluated by simple visual inspection of an adaptation curve. For example, from
a curve such as that illustrated in Fig (11.1) one can estimate (sometimes) the value of to at which the
curve is maximum, and of tmax at which the curve is minimum. Sometimes the curve seems to continue
falling slowly throughout its duration, so I usually suggest taking tmax as the time when the curve has
fallen through, say, 90% of its total excursion. The final result of the calculation is not all that sensitive
to small changes in tmax, but is exquisitely sensitive to changes in the estimate of to. Anyway, a glance
at the adaptation curve provides an estimate of the ratio of tmax / to, and the log of the square root of this
ratio equals the information transmitted (or an approximation thereto).

If, moreover, we introduce Equation (9.3) into (11.10), then

∆H = 1
2 ln(mmax / mo) ,

where m is the number of samplings made by the receptor. But since mo is the minimum number of
samplings = 1 (say), therefore

∆H S 1
2 ln mmax .     (11.11)

That is, information received by the receptor is approximately equal to one-half the logarithm of the
greatest number of samplings that can be contained in the memory of the receptor.

The reader will recall from Chapters 4 and 5 that one can also calculate an information per stimulus
by means of an experiment on categorical judgments. Quite a lot of labor was expended to derive the
quantity , (X |Y ) from the confusion matrix. It was shown that for all modalities of sensation, a
maximum of about 2.5 bits of information was transmitted per stimulus, the so-called channel capacity.
This 2.5 bits or 1.75 natural units of information corresponded to 22.5 = e1.75 S 6 categories. That is, a
human being is capable of distinguishing, without error, “ the equivalent of” about 6 categories of light
or sound intensity, concentration of solutions, etc. We now explore the question of the relationship
between this quantity of information, , (X |Y ), obtained from measurements of categorical judgments,
and the information ∆H, obtained using Equation (11.7) from measurements made on adaptation
curves.

The factors limiting the maximum value of , (X |Y ) are usually assumed to reside in the brain.
Perhaps the main reason for this assumption is that the number of jnd’s distinguishable (range of 20 –
350) is much greater than the number of absolute categorical judgments (about 6). Since the senses can
distinguish many more than 6 jnd’s, the limitation in making an absolute judgment about an unknown
stimulus must, surely, lie in the brain. And so it may be. But I would like to suggest an alternative. I
suggest that the limitation on the quantity of information available for an absolute judgment may be, in
the final analysis, due to the limitation in the amount of information provided by the sensory receptors.
That is, if the sensory receptors can receive a maximum of ∆H bits of information per stimulus, then no
more than ∆H bits can be used to make an absolute judgment. Implicit in this suggestion is that, to a
degree of approximation, the sensory receptors operate in parallel; for example, the amount of
information received by the brain from n olfactory receptors is the same as that received from only one
receptor. That is, redundancy (numerosity) in receptors may be necessary to insure receipt of a
stimulus, but once received, the information from the large number is the same as the information from
only one receptor. Some psychologists have expressed dissatisfaction with this hypothesis. Ward (1991)
has put forward an alternative hypothesis: N receptors acting in parallel and sampling at rate
α samples/s may produce the effect of a single adaptation process with sampling at the rate Nα. Such
may be the case, but further work must be done on it.

I submit, anyway, by way of conjecture, that

∆H = , (X |Y ) .     (11.12)
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The truth of Equation (11.12) is not vital to the integrity of the entropy theory of perception, but we
shall see presently that (11.12) does seem to verify when tested on experimental data — which we now
proceed to do.

EXPERIMENTAL TESTS OF THE ENTROPIC THEORY OF ADAPTATION

Let us now test the entropic theory, to the level that we have developed it hitherto, using published
data. Gent and McBurney (1978) measured the change in magnitude estimate, F, with time, for the
sense of taste. Let us select from their paper a medium (0.32 M) solution of sodium chloride. I
digitized, as carefully as possible, the data from Gent and McBurney’ s Figure 1. When Equation (11.3)
was fitted to the data using a least squares technique, the following parameter values were obtained:

k = 7.634 ,
λ = 46.04 s.

The fitted equation was, therefore,

F = (7.634/2) ln(1 + 46.04 / t ) .     (11.13)

The results are graphed in Figure 11.2. The fitted curve, while perhaps tolerable, seems to fall a
little too slowly at larger times, a feature characteristic of all data in this paper.5 Gent and McBurney
fitted the curves to monoexponential functions.

Using the above parameter values, we can measure the information transmitted per sodium chloride
stimulus. From Equation (11.9),

∆F = Fmax − Fmin = 8.57 − 1.00 = 7.57 ,     (11.14)

if we consider the adaptation process to be complete at 90 seconds. The excursion, ∆F, would equal
8.57 – 0 = 8.57, if we suspect that the adaptation process would proceed to extinction. Therefore, from
Equation (11.8), using the smaller of the two values for ∆F, the information transmitted by this solution
of medium intensity

∆H = ∆F / k = 7.57 / 7.634 = 0.992 natural units.
Dividing by ln 2,

∆H = ∆F / (k ln 2) = 1.431 bits,     (11.15)

a value slightly less than the channel capacity for taste (1.7 – 2.0 bits). Or, using the larger of the two

Figure 11.2 Data of Gent and McBurney (1978) illustrating psychophysical adaptation. Mean
magnitude estimate of 0.32 M solution of sodium chloride plotted against time. The smooth
curve is given by the entropy equation (11.13).
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Table 11.1 Data of Matthews (1931), Figure 3: Two-Gram Weight Applied to Muscle of Frog.

Time [s] Impulse frequency [s−1] fitted Impulse frequency [s−1] measured

0.228 117.47 118.98

0.411 101.68 97.79

0.826 83.28 84.63

1.277 72.11 74.80

1.658 65.56 65.72

2.059 60.24 59.86

3.073 50.76 50.73

4.009 44.78 44.82

5.068 39.74 39.36

6.048 36.13 34.40

7.052 33.11 32.51

8.091 30.53 29.44

9.056 28.50 27.80

10.030 26.74 26.56

11.080 25.07 24.62

12.050 23.71 24.62

13.060 22.45 23.63

14.050 21.36 23.33

Note: Data were fitted to the entropic adaptation equation (11.3) using a simplex procedure with
the least squares criterion (see Figure 11.3). The number of digits used for a given entry does not
reflect the number of significant figures in the measurement, a quantity that is not really known
to the author. Function fitted is F = 0.5 × (Parameter 1) × ln(1 + (Parameter 2) / t ). Value of
Parameter 1 = 54.51. Value of Parameter 2 = 16.71. Sum of squares of residuals = 38.22

values for ∆F,
∆H = 8.57 / (7.634 ln 2) = 1.620 bits.     (11.16)

Moving now to an example in which F is measured as impulse frequency in a sensory neuron, we
examine the data of B.H.C. Matthews (1931). Matthews investigated the response to stretch receptors
in the muscles of a frog. He provided stretch or tension stimuli to a small muscle in the upper, outer
side of the middle toe of the frog, and recorded from the lateral branch of the peroneal nerve. A 2-gram
load was applied to the muscle tendon, which was immersed in Ringer’ s solution, and the resulting
impulse frequency plotted against time is shown in the Matthews’ Figure 3. The entropy equation for
adaptation, (11.3), was fitted to the data digitized from this graph.6 The parameter values obtained were
as follows (Table 11.1):

k = 54.51 ,
λ = 16.71 s.

The fitted equation was, therefore,

F = ( 1
2 )(54.51) ln(1 + 16.71 / t ) .     (11.17)

From Equation (11.9)

∆F = Fmax − Fmin = 119 − 23 = 96 impulses / s.     (11.18)
From Equation (11.8),

∆H = ∆F / (k ln 2) = 96 / (54.51 ln 2) = 2.541 bits.     (11.19)
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Figure 11.3 Data of Matthews (1931), Figure 3 illustrating neural adaptation. Two-gram load
applied to a muscle tendon of the frog. The smooth curve is given by the entropy equation
(11.17).

Again we find that the value for information transmitted per stimulus is close the the “ global” value
of about 2.5 bits. Since 22.541 = 5.82, we see that we remain close to the “ magical number 6” categories.
Matthews’ data and its fitted curve are shown in Figure 11.3. Using the very approximate Equation
(11.10) with data from Table 11.1, we have

∆H S 1
2 ln(14.05/0.228) / ln 2 = 2.97 bits.     (11.19a)

Continuing with examples where F is measured neurophysiologically, we consider adaptation in the
guinea pig auditory nerve, as reported by Yates, Robertson and Johnstone (1985) (see Chapter 3,
Adaptation). The responses in auditory nerve ganglion cells to 100 ms tone bursts were measured by
these investigators. Adaptation was incomplete; that is, firing rate did not descend to zero. Judging
from results of experiment GP53/08:4, the decline in firing rate was complete by 25 to 30 ms following
onsetQQ of the stimulus. To use the graphs in this paper, probability density was interpreted as firing
rate, as suggested by the authors. These data (Yates et al., Figure 5) were digitized and fitted to the
entropy equation (11.3). The values of the parameters were as follows:

k = 157.7 ,
λ = 37.64 ms.

Thus, the fitted equation was

F = ( 1
2 )(157.7) ln(1 + 37.64 / t ) .     (11.20)

From Equation (11.9)

∆F = Fmax − Fmin = 284 − 67 = 217 .     (11.21)

From Equation (11.8)

∆H = ∆F / (k ln 2) = 217 / (157.7 ln 2) = 1.99 bits.     (11.22)

The data and fitted curve are shown in Figure 11.4.
In passing, may I draw your attention to the older neurophysiological data on audition by Galambos

and Davis (1943), also introduced in Chapter 3. Pure tones were delivered to the ears of cats, and the
frequency of impulses was measured in what were believed originally to be single auditory fibers (1943
paper). However, in a note of correction (1948), the authors amended the interpretation of their
measurements, and attributed them to single unit activity of second-order neurons, rather than
first-order neurons, as originally expected. The data of Galambos and Davis were digitized from their
graph (Figure 3), and published in Table 2 of Norwich (1981). The entropic equation (11.3) was fitted

Information, Sensation and Perception.  Kenneth H. Norwich, 2003.



11. Sensory Adaptation 120

Figure 11.4 Data of Yates et al. (1985). Neural adaptation in the auditory ganglion cell of a
guinea pig to a 100 ms tone burst. F is measured as action potential probability density [Hz],
similar to impulse frequency. The smooth curve is given by the entropy function (11.20). To
estimate the information transmitted by this adaptation process using Equation (11.10), we
observe that tmax S 25 ms and to S 1 ms. Thus, ∆H S ln 25 / ln2 = 2.3 bits of information per
stimulus.

as closely as possible to their data. The following parameter values were obtained:

k = 120.31 ,
λ = 4.00 s.

Hence

∆F = 400 − 80 = 320 Hz

∆H = 320 / (120.31 ln 2) = 3.84 bits.

    (11.23)

    (11.24)

Analogous to auditory nerve fiber response to acoustic stimuli, we examine now optic nerve
response to visual stimuli. Cleland and Enroth-Cugell (1968) applied square-wave inputs of light to the

Figure 11.5 Data of Cleland and Enroth-Cugell (1968). Neural adaptation in the on-center
ganglion cells of the cat to square-wave inputs of light to the retina. The smooth curve is given
by the entropy equation (11.3) with k = 302.5 and λ = 0.1175 s.
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retina of cats, and recorded the impulse frequency of on-center ganglion cells in the cat retina from
optic tract fibers. A number of their tracings for different light intensities were provided in the authors’
Figure 2, showing the effects of adaptation. Their tracing #2 has been digitized, as well as we were
able, and the entropy equation for adaptation (11.3) was fitted to the data (Figure 11.5). The exact
position of t = 0 for these data was hard to determine. I took the liberty here of shifting the origin back
and forth by a few milliseconds in order to produce the best curve fit. The values for the parameters
were as follows:

k = 302.5 ,
λ = 0.1175 s.

∆F ≥ 271.0 − 37.6 = 233.4

∆H ≥ 233.4 / (302.5 ln 2) = 1.11 bits.

    (11.25)

    (11.26)

I use “ >” because the adaptation process is continuing at 0.42 seconds, where the graph in Figure
11.5 terminates. Interpretation of these results is not straightforward. We are decidedly not dealing here
with independent sensory receptors (see, for example, Dowling, 1987, page 35-36). Moreover, the input
was not a single step function but a square wave, so that receptors were not totally unadapted at t = 0,
the time of stimulus onset.

EXPERIMENTAL TESTS OF THE ENTROPIC THEORY: COMBINED STIMULUS
INTENSITY AND ADAPTATION

In Chapter 10, we subjected the entropy equation with t = constant [Equation (10.3)] to various
experimental tests, and we confirmed the fact that the WF and PBS laws merge and are contained
within the entropy equation. In the preceding section of the present chapter we subjected the entropy
equation with I = constant [Equation (11.3)] to a number of experimental tests. We confirmed the
adequacy of the equation to fit adaptation data, although in some instances, particularly with magnitude
estimates, one would be happier with a closer fit.5 We also observed that the values of information
transmitted per stimulus calculated from adaptation data were compatible with corresponding values
calculated from experiments on categorical judgments. Henceforth, it will be assumed that the “ channel
capacity,” whether determined by entropic or category analysis, will be about 2.5 bits of information
per stimulus.

Let us proceed, now, and subject the general equation of entropy, (9.20)/(10.1)/(11.1), to
experimental test. That is, we let both I and t vary,7 and study the surface,

F = F(I , t ) .     (11.27)

That is, we may regard I and t as two independent variables and F as a dependent variable. The
graph of F as a function of I and t will describe a surface. However, for simplicity in presenting the
data, we shall take “ slices” through the surface for I = I1, I2, I3, and present a series of
two-dimensional graphs of F vs. t.

Let us consider first the older work of Matthews (1931) on stretch receptors, whose experiments
were described above. Instead of dealing with only one experiment in which a 2-gram force was
applied, we now consider, together, three experiments in which forces of 1, 2, and 5 grams were
applied to the tendon. Each force gave rise to its own, unique adaptation curve. The three sets of data
were fitted simultaneously to the general entropy equation (11.1), each set being assigned equal
weighting. The total sum of squares was minimized to give values for the three parameters. Data
analyzed were taken from Matthews’ Figure 15B (in Ringer’ s solution) which, I am assuming, were all
obtained from the same preparation (or, at least, are governed by the same set of parameters). The
parameter values are:

k = 32.24 ,
β = 17.19 (cf. β = 54.51 for the preparation analyzed in Figure 11.3)
n = 0.9496 .
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Figure 11.6 Data of Matthews (1931), Figure 15B. Frog stretch receptor. All three curves were
fitted simultaneously to the same set of 3 parameters (given in the text). That is, only 3
adjustable parameters were used, in all, to curve-fit all 3 curves, or a ratio of one parameter per
curve. The fitted entropy function is given by Equation (11.28).

The results of the three simultaneous curve fits are shown in Figure 11.6. Remember that a total of
3 parameters were used to curve-fit the 3 sets of data, or a ratio of one parameter per curve. Equation
(11.1) is represented explicitly by

F = ( 1
2 )(32.24) ln(1 + 17.20 I 0.9496) .     (11.28)

Calculating the channel capacity using the 5-gram data set,

∆F = 72.9 − 27.2 = 45.7 impulses per second.

(∆H = 45.7 / (32.34 ln 2) = 2.04 bits per stimulus.

    (11.29)

    (11.30)

The three data sets and the corresponding parameter values are given in Table 11.2.
As a second example of a surface-fit to Equation (11.1), and the first example of insect sensation,

we consider the sugar receptor of the blowfly. Dethier and Bowdan (1984) stimulated this receptor with
sucrose solutions of 3 different concentrations: 1.0 M, 0.1 M and 0.01 M. They measured the frequency
of impulses in bipolar neurons in tarsal hairs. In this way, 3 sets of data were obtained showing the
adaptation of the sugar receptor. The 3 sets of data were fitted simultaneously to the general entropy
equation (11.1), with weightings in the ratio of 1:3:5 (1.0 M, 0.1 M, 0.01 M). With parameters
evaluated, Equation (11.1) became

F = ( 1
2 )(121) ln(1 + 1.15 I 0.585/ t ) .     (11.31)

The data and fitted surface (curves) are shown in Figure 11.7. Again we note that all three curves
have been fitted with the same 3 parameter values, or, the average ratio of one parameter per curve.
Maximum information per stimulus was calculated to be 2.9 bits per stimulus. More details about these
curves are given by Norwich and Valter-McConville (1991). In this same paper the reader may find
more extensive mathematical tests of the adaptation principle and a simultaneous curve-fit to
adaptation data from the slit sense organ on the walking leg of the Hunting Spider.

We can now understand the near-parallel straight lines of Schmidt (1988, page 88), introduced in
Chapter 3. The logarithm of the neural response of a pressure receptor plotted against the logarithm of
the stimulus pressure (for t constant) gives a straight line (power law of sensation). As the state of
adaptation increases (t increases), the straight line shifts downward on the graph. The result is a series
of nearly parallel straight lines (Figure 3.3). We proceed by expanding the right-hand side of Equation
(11.1) in a Taylor series (where t is large enough to make the expansion legitimate), as in Equation
(10.7). Retaining only the first order term,

F = 1
2 k β In/ t .     (11.32)
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Table 11.2 Data of Matthews (1931), Figure 15B. Three Experiments in Which a 1-gram,
2-gram and 5-gram Weight Were Applied, Respectively, to the Muscle of a Frog.

t [s] Frequency Fitted Frequency Measured Data set

1 gram

0.548 56.06 52.47

1.373 41.98 40.06

2.975 30.85 30.12

5.992 21.81 22.95

7.955 18.55 20.18

2 gram

0.746 61.55 62.48

1.354 52.22 52.43

3.036 39.97 40.82

4.021 35.87 37.10

7.030 28.12 30.61

9.944 23.66 26.02

5 gram

1.077 69.51 72.91

1.845 60.98 60.32

3.808 49.69 49.73

6.787 40.94 39.64

10.01 35.27 33.46

13.97 30.60 27.20

Note. The three data sets were curve-fitted simultaneously to Equation (9.20)/(10.1)/(11.1) using
the same three parameters for all three curves (Figure 11.7). The equation is

F = 1
2 k ln(1 + β In/ t ) .

Intensity, I, was set equal to 1, 2 and 5 respectively in each of the three curve-fits. The above
equation was then fitted to the F vs. t data. Function fitted is F = 0.5 × (Parameter 1)
× ln(1 + (Parameter 2) × I ^ (Parameter 3) / t). Value of Parameter 1 = 32.24. Value of Parameter
2 = 17.19. Value of Parameter 3 = 0.9496. Sum of squares of residuals = 64.50.

The receptor can be represented in different states of adaptation by setting t = ti = constant. Taking
logs of both sides of (11.32),

logF = n log I + log( 1
2 k β) − log ti .     (11.33)

That is, plotting logF vs. log I gives a straight line whose slope is n and whose intercept,
log( 1

2 k β) − log ti, slides down as ti increases, exactly as shown in Figure 3.3. As an exercise, the reader
might like to check the theoretical values of the spacing between the straight lines in Figure 3.3. Take I
as constant in Equation (11.33), and calculate the expected displacement of each line from the
uppermost line using the t-values on the right-hand side of the graph. Compare with the observed
displacement.

I think that the point is amply illustrated: Equation (9.20)/(10.1)/(11.1) is capable of allowing for
both adaptation and stimulus magnitude changes using the same set of parameter values, when F is
measured neurophysiologically. The information transmitted is usually close to the nominal value of
2.5 bits per stimulus.

Information, Sensation and Perception.  Kenneth H. Norwich, 2003.



11. Sensory Adaptation 124

Figure 11.7 Data of Dethier and Bowdan (1984) for the sugar receptor of the blowfly. For the
upper curve, the concentration of the sugar solution was 1.0 M (i.e. I = 1.0); for the middle
curve, 0.1 M (I = 0.1); and for the lowest curve, 0.01 M (I = 0.01). Again, all three curves were
fitted simultaneously to the same set of 3 parameters; that is, only 3 adjustable parameters were
used, in all, to fit all 3 curves, or a ratio of one parameter per curve. The fitted entropy function
is given by Equation (11.31).

MAGICAL NUMBERS FROM THE LAW OF SENSATION

You will recall from our studies in Chapter 10 that it was not always possible to obtain three robust
parameters from Equation (10.3) using measurements of F vs. I (t constant), but that we did manage to
do so in a number of cases. I suggested that there was magic in the values obtained for the parameter, k,
and we are now in a position to be appropriately enchanted.

For the sodium chloride data of S. S. Stevens (Figure 10.2), we obtained the value k = 41.31. The
values of Fmax and Fmin can be read directly from the graph: Fmax = e3.91 = 50.0 and
Fmin = e−0.288 = 0.75. Hence we can calculate ∆F from this experiment in the same manner as for an
adaptation curve. As in Equation (11.9),

∆F = 50.0 − 0.75 = 49.25 .     (11.34)

Using Equation (11.8)

∆H = 49.25 / (41.31 ln 2) = 1.72 bits.     (11.35)

We observe that this value is quite close to the value of 1.62 bits of information per stimulus
obtained by analysis of the taste adaptation data of Gent and McBurney for sodium chloride. It is also
close to the value of 1.70 bits per stimulus for , (X |Y ) (sodium chloride) obtained from an experiment
on categorical judgments (Beebe-Center et al., 1955).

For the auditory data of Luce and Mo (Figure 10.3), k = 113.1 .

Fmax = e4.96 = 142.6 , Fmin = e3.18 = 24.0 .

∆F = 118.6 .

∆H = 118.6 / (113.1 ln 2) = 1.51 bits.

    (11.36)

    (11.37)

As much as one would like to supply limits of variability for such calculations, I know of no way to
calculate these limits.

From Equation (11.22), the information transmitted in the guinea pig ganglion cell was 1.99 bits.
Category experiments on human audition will give values between 1.62 and 2.51 bits per stimulus
(Garner 1953).
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For the weight-lifting data of Luce and Mo (Figure 10.3), k = 1040.

Fmax = e7.25 = 1408 , Fmin = e3.22 = 25.0 ,

∆F = 1408.0 − 25.0 = 1383 .

∆H = 1383 / (1040 ln 2) = 1.92 bits.

    (11.38)

    (11.39)

I have no corresponding values for , (X |Y ) for comparison but, again, the value is close to the
expected global value for channel capacity.

Finally, from Chapter 10, the sweetness-of-sucrose data of Moskowitz gave

k = 24.6 , Fmax = 45.0 , Fmin = 0.80 .

∆F = 44.2 ,

∆H = 44.2 / (24.6 ln 2) = 2.59 bits,

    (11.40)

    (11.41)

a little high for taste but, again, these data were quite approximate.
Again, the reader is reminded that data measured to study the law of sensation usually do not

permit estimation of 3 robust parameters, and, therefore, do not usually permit calculation of channel
capacities.

NUMERO, NUMERO, WHEREFORE ART THOU NUMERO?8

What function, you might wonder, do numbers have in science?
What is the difference, I put to you, between a physicist and an engineer?
Well, you may be inclined to answer, the physicist deals with pure science and the engineer with

applied science.
While that is true, I believe that there is another more salient distinction referable to their respective

uses of mathematics. The engineer uses mathematics to obtain (often) a numerical result: the weight
tolerance of a bridge, the characteristics of a circuit. The physicist uses mathematics to obtain (often) a
“ verbal” or non-numerical result: energy and mass are, in principle, the same; the universe began from
an explosion at a single point; etc. As I stated before, I am writing this material with the
Weltanschauung of the physicist. Therefore, to me, the pages of numbers given above are not
end-values in themselves. They are useful only in helping to confirm a position which can be stated in
words, namely that a single principle of entropy, F is a measure of H (F = kH ), seems to account for
all stimulus-magnitude and all adaptation experiments in which a single, constant stimulus is used. As
we move forward in this book, we shall see that the scope of this principle is even broader.

Figure 11.8 Data of Small and Minifie (1961), Figure 3(d), 50 seconds off and 10 seconds on:
simultaneous dichotic loudness balance. Data are plotted here in the usual way: decibels of
adaptation are plotted against time. The data fall on a curve.
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AUDITION: THE TECHNIQUE OF SIMULTANEOUS DICHOTIC LOUDNESS
BALANCE (SDLB)

This technique was described in Chapter 3, Adaptation. A tone of constant intensity, Ia, is presented
to the adapting ear, beginning at t = 0. An intermittent tone of variable intensity, I, is presented to the
opposite or test ear for total duration, t U. The subject must adjust the intensity of the intermittent, test
tone until its loudness matches that of the steady, adapting tone.

The application of the entropy principle to the SDLB technique is very simple (if not perfectly
accurate). Let us assume that both ears of a given subject have identical values for the parameters k, β
and n. If the loudness of the test tone is equal to that of the adapting tone then

1
2 k ln(1 + β In/ t U) = 1

2 k ln(1 + β Ia
n / t ).     (11.42)

Hence

In/ t U = Ia
n / t

n log10I − n log10Ia = log10 t U − log10 t

10 log10(I / Ia) = (10 / n) log10 t U − (10 / n) log10 t .     (11.43)

But

10 log10(I / Ia) = decibels of adaptation,

so that

decibels of adaptation = (10 / n) log10 t U − (10 / n) log10 t .     (11.44)

Therefore, if we plot dB of adaptation against log10 t, we expect to obtain a straight line whose
slope equals −10 / n, where n is the power function exponent from the power law of sensation.

In the various papers describing experiments of the SDLB type, dB of adaptation is plotted against t
(not log t), and is seen to produce a curve, as shown in Figure 11.8 (data from Figure 3d, 50 seconds
off, 10 seconds on, of Small and Minifie, l961). If, however, we re-plot the data with a log10 t–scale
instead of a t-scale, the data are seen to lie nearly along a straight line, as shown in Figure 11.9. Fitting

Figure 11.9 Same data as in Figure 11.8. However, decibels of adaptation are now plotted
against the log of time. The data tend to lie on a straight line. Then −10/slope of line gives the
power function exponent. The intercept with the line log t = 0 gives the “ on time,” in principle.
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a straight line to these data, we obtain

decibels of adaptation = − 8.816 − 27.98 log10 t .     (11.45)

Comparing (11.44) with (11.45) we have

(10 / n) = 27.98 , n = 0.36 .     (11.46)

This value for n is quite close to the expected value for the power function exponent for sound
intensity at 4000 Hz, the frequency used by Small and Minifie. We are not quite so accurate, however,
when we test the intercept. Again comparing (11.44) with (11.45),

(10 / n) log10 t U = −8.816 .     (11.47)

Inserting the value of n from (11.46),

log10 t U = (−8.816)(0.36) / 10 = −0.317

t U = 0.482 minutes = 29 seconds.     (11.48)

However, the experimental “ n time” for this graph was only 10 seconds. Other graphs obtained
from SDLB experiments gave somewhat closer estimates of t U. But one must remember that Equation
(11.42), from which these computations were made, assumed that the test ear was always completely
unadapted, which was not the case experimentally. I think that the predictions made by the theory are
reasonable.

Loudness adaptation does not occur, or is not prominent, monaurally, as discussed by Scharf (1978,
p. 219). Yet adaptation of one ear with respect to another is prominent. Such an effect can be explained
if k or β for audition were slowly increasing functions of time. For example, β / t might tend to remain
constant. We may observe, though, that Equation (11.43) can be obtained from Equation (11.42) even if
k and β are time-varying parameters, provided that β[left ear] = β[right ear], etc.

The reader is encouraged to carry out more of these SDLB analyses, and perhaps to refine Equation
(11.42). The mathematical analyses are quite straightforward, requiring only a regression line. Don’ t
forget: “ decibels of adaptation” are negative numbers as we calculate them.

CONCLUDING REMARKS

I have presented rather a new view of the process of sensory adaptation. Eschewing the more
traditional ideas such as the association of adaptation with fatigue, I have represented adaptation as the
process of acquisition of information. As adaptation proceeds, information is gained progressively.
When adaptation is complete, we cease to sensate9 because we have received all possible information
from a particular stimulus. We might extend this idea beyond simple stimuli of the intensity type. When
an image is fixed in constant position on the retina, the image fades or “ grays out” (Troxler’ s effect).
Perhaps this is another example of the principle: To perceive is to receive information; in the absence
of new information, sensation desists. Troxler’ s effect has, recently, been simulated by a “ silicon
retina” as an adaptation process (Mahowald and Mead, 1991).

Another view of adaptation as gain in information was presented by Keidel et al. (1961).
In the process of deriving Equation (11.3), we have held I constant, and set λ = β In = constant in

Equation (11.2). In so doing, we have removed assumption (6) from the set of six assumptions listed in
Chapter 9.

Equation (11.3) was descended from its ancestor,

H = 1
2 ln[1 + σS

2 / (mσR
2 )] .     (9.10)

You will recall that stimulus population variance, σS
2, was divided by m, the number of samplings

made by the receptor since the time of introduction of the stimulus, to provide a reduced variance,
σS

2 / m, by virtue of the central limit theorem. That is, the receptor was modeled as an averaging device.
Hence adaptation as reduction of uncertainty. However, mathematically, we obtain the same Equation
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(9.10) if we associate each sampling with the population variance, σS
2, and regard the reference

variance, σR
2 , as increasing with the number of samplings. For example, by the rule of addition of

variances, we may obtain m times the error squared after m measurements: hence mσR
2 . Perhaps the

reader prefers to model the sampling process in this manner, but I find it less comprehensible.
Our fundamental equation of adaptation, (11.3), is in logarithmic form, but for all except the

smallest values of t, the F-function can be expanded in a Taylor series [cf. Equation (11.32)], in the
usual way, to give a power function. Retaining only the first term of the series, we have

F = 1
2 k λ t−b ,     (11.49)

where b = −1. It is of interest that in recent years, insect physiologists have been curve-fitting
adaptation curves by power functions of the form of (11.49), but usually with fractional values for the
constant b, such as b = −0.31 (Chapman and Smith, 1963; Thorson and Biederman-Thorson, 1974;
Mann and Chapman, 1975). In re-analyzing some of their data, our research group has found that better
curve-fits are sometimes obtained using b = −1. See, for example, the analysis of the data of
Bohnenberger (1981) as presented by Norwich and McConville (1991). You will recall that our value,
b = −1, arose originally from the “ null conjecture” of linear sampling rate, expressed by Equation (9.3).
There is, of course, no reason why b should not be retained as an additional parameter; it’ s just that
there is, perhaps, not sufficient evidence to support abrogation of the null conjecture.

Finally, a remark about the synchrony of the process of adaptation with the time interval of
exposure to the stimulus. My original conjecture (Norwich 1981) was that the neurophysiological
adaptation process (which we have analyzed above) was synchronous with the exposure of the receptor
to the stimulus environment. That is, as the receptor sampled, so the neuron fired. Nature, however,
was not to be this simple. Experiments carried out by L. Ward (1991) have shown that the sampling
process (at least for vision) is completed exceedingly rapidly. In the order of one millisecond, human
perceivers have obtained nearly the full complement of information from a flash stimulus, as measured
later in an experiment on categorical judgments. In contrast, however, the neurophysiological
adaptation curve may begin at about one millisecond, and proceed for many milliseconds, as seen from
the guinea pig data of Cleland and Enroth-Cugell (1968). It is as if the retina takes a “ photograph” of
the flash using a very rapid “ shutter,” and this photograph is later scanned by the more slowly-reacting
nervous system. The scanning comprises the sampling process which is responsible for adaptation to
the stimulus. But the above is pure conjecture.

NOTES

1. We shall confine the discussion of adaptation to changes in the perceptual variable, F, with time.
That is, we shall not be concerned here with changes in threshold that accompany adaptation.

2. I am resisting the temptation to represent the constant β In by the Greek letter τ, even though it
has the dimensions of time. τ is too easily misread as t.

3. It is arguable that m may not take on values less than 2 in Equation (11.3). Remember that,
fundamentally, Equation (11.3) comes from Equation (9.12). If the receptor is utilizing sample
variances as estimators of σS

2, then at least 2 samples are needed. Then m ≥ 2.
4. We shall be using to fairly frequently, so I used “ to” rather than the longer “ tmin.”
5. When one allows explicitly for a threshold value of ∆H, as given later by Equation (14.4), the

rate decline of the theoretical curve is found to match the observed data much more closely.
6. The digitization performed here and elsewhere in this book was usually carried out using a

digitizing site mounted on a Hewlett Packard plotter (which was also used to draw many of the graphs).
A computer program was written which facilitated the process and permitted digitization from log or
linear scales.

7. We actually carried out a similar exercise at the end of Chapter 10, when we studied the total
number of impulses recorded over a period of time.

8. Wherefore? means why? or for what reason? Juliet was not searching for Romeo from her
balcony! Refer to commentary on Shakespeare’ s play.
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9. The Oxford English Dictionary recognizes the intransitive verb, sensate, as an obsolete form.
However, I recommend its revitalization for use in the field of sensation and perception. He ceased to
sense while under anesthesia seems less satisfactory than He ceased to sensate while under anesthesia.

2003 ed. notes:
Q . The Universal model however, does obviate the problem of maximum m by establishing,

effectively, a “ forgeting function” : the receptor memory can retain only a certain number of bits of
information.

Q Q . Probably not. Judging from the data of Kiang et al. (Research Monograph 35, The MIT Press,
Cambridge Mass., 1965.), the adaptation would continue at a slow rate for some time, perhaps in excess
of one minute.
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