
CHAPTER 12

DIFFERENTIAL THRESHOLDS,
WEBER FRACTIONS AND JND’S

THE ANALOGS

Before pressing into this rather detailed chapter, let’s take a minute for purposes of orientation. In
the flow diagram, Figure 1.2, we are still within the center block: evaluation of F = kH. As I have
reiterated at various times, this book is largely about the unification of the laws of sensation. I am
endeavoring to show that the single equation, F = kH, with a single, explicit mathematical form for the
H-function, will encompass all sensory phenomena involving the variables steady I, F, and t > 30 ms.
for a single stimulus. While we could possibly improve our curve-fitting, upon occasion, by modifying
the H-function in some ad hoc manner, that is not really the issue. The important matter is that one
function permits us to account for (nearly) all observed sensory effects in a quantitative manner, and
from this one function we can derive (nearly) all the empirical laws that have been formulated during
the past 130 years. Unification is not a game to be played for the exercise, or for its own sake (to say “I
climbed the mountain”). Unification is pursued for the physical and biological insight provided by the
unifying equation, as we discussed in Chapter 1, as well as for its predictive value.

We recall the analog to the ideal gas law that was suggested in the first and third chapters:

V T P

¸ ¸ ¸
t I F

(i)
P ∝ T or P = f (T, V U) ,

(Charles’ law) : pressure is a monotone increasing function of T with V = V U = constant, analogous to

F = F(I, t U) ,

(Law of sensation) : F is a monotone increasing function of I with t = t U =constant.

(ii)
P ∝ 1 / V or P = f (TU, V ) ,

(Boyle’ s law) : Pressure is a power function of V with T = TU = constant, analogous to

F = F(IU, t ) ,

(Law of adaptation) : F is a power function of t (for larger t ) with I = IU = constant.
In this chapter we come to the third equation:

(iii)
∆T / T ∝ ∆P � (1 / T )

with ∆P held constant.
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We shall now show that

∆I / I ∝ ∆F � (1 / I ) with ∆F held constant (well, almost!).

No. There is no profound connection (of which I am aware) between the ideal gas law and the
entropy law. I am just trying to illustrate, particularly for readers who are unfamiliar with the methods
of physics, how a single equation can contain within itself the explanation for many, apparently diverse
physical phenomena. I am trying to encourage the reader, in this way, to think of the law of sensation,
the principle of adaptation, and the Weber fraction as different views of the same principle of
perception: to perceive is to gain information.

THE WEBER FRACTION

The Weber fraction, ∆I / I, was introduced in Chapter 3, The Weber Fraction, and that material
should probably be reviewed at this time. We require a detailed understanding of virtually every
paragraph in that section as we proceed through the following theoretical derivation of the
mathematical function for ∆I / I.

The mathematical technique that will be employed is to replace the differentials in a differential
equation by their finite differences (e.g. replace dx by ∆x), the inverse of the process used by Fechner
(Equations (3.2) and (3.3)), who replaced finite differences by the corresponding differentials. We are
already in possession of an integrated function, the H- or F-function, and we shall proceed to the
corresponding differential equation; Fechner began with a differential equation and integrated to obtain
his “F-function.”

Luce and Edwards (1958) supported by Krantz (1971) and others attempted to show that
Fechnerian integration was in error, and that jnd’ s could not, in general, be summated using Equations
(3.11) and (3.12). In the present discussion, we confine ∆x to be small in comparison with x, and the
objections expressed mathematically on page 225 of the paper by Luce and Edwards do not apply. It is
important to understand and to observe that total jnd’ s calculated from Equations (3.11) and (3.12) is,
indeed, nearly the same value as obtained by adding jnd’ s one on top of the other, the method
recommended by these authors (Luce and Edwards, page 233). The reader is referred to Figures 3.5(a)
and (b), showing the data of Lemberger (1908), dealing with differential thresholds for sugars. These
data were taken from Table 4 of Lemberger’ s paper, which is reproduced here, in part, in Table 12.1

Table 12.1 Data of Lemberger (1908): Weber fraction for sucrose

Measured Differential Threshold Weber Fraction Measured Diff Thresh Weber Fraction

(Conc. of soln in percent) (Conc. in Percent)

0.44 – 0.60 0.3636 5.080 – 5.833 0.1482

0.60 – 0.82 0.3666 5.833 – 6.750 0.1572

0.820 – 1.125 0.3720 6.75 – 7.75 0.1481

1.125 – 1.400 0.2444 7.750 – 8.916 0.1505

1.40 – 1.63 0.1643 8.916 – 10.35 0.1608

1.63 – 1.85 0.1350 10.35 – 11.97 0.1565

1.85 – 2.13 0.1514 11.97 – 13.90 0.1612

2.13 – 2.45 0.1502 13.90 – 16.17 0.1633

2.450 – 2.825 0.1531 16.17 – 18.75 0.1596

2.825 – 3.267 0.1561

3.267 – 3.775 0.1558

3.775 – 4.390 0.1629

4.39 – 5.08 0.1572

Note. German, “Saccharose” translated as “sucrose”
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(last few points omitted). In Chapter 3, with reference to Figure 3.5 (b), and using Equation (3.12), we
calculated the total number of jnd’ s from I = threshold to I = 18.75% solution to be 21 jnd’ s. However,
as may be seen from Table 12.1, Lemberger actually made 22 measurements of ∆I / I by adding jnd’ s
one on top of the other. That is, (∆I )1 extended from 0.44% to 0.60% solution; (∆I )2 extended from
0.60% to 0.82% solution, etc. So the 22 measurements, extending from 0.44% to 18.75%, comprised
exactly 22 jnd’ s. This value agrees exceedingly well with our value of 21 jnd’ s obtained using Equation
(3.12). However, the values of ∆I were small compared with I. When ∆I approaches I in value, one
must, indeed, heed the warning of Luce et al.

The above having been said, we proceed with the derivation of the theoretical function for the
Weber fraction, ∆I / I, which issues directly from Equation (9.19),

H = 1
2 ln(1 + β In / t) .     (12.1)

It will be assumed that in experiments for determining Weber fractions, all stimuli are applied for
the same interval of time, t U, so that we may again introduce Equation (10.2)

γ = β / t U .     (12.2)
Thus

H = 1
2 ln(1 + γ In) .     (10.3) / (12.3)

Differentiating H with respect to I,

dH
dI

=
1
2 γn In−1

1 + γ In .     (12.4)

Replacing dH and dI by the corresponding finite differences, and rearranging the equation,

∆I = 2∆H (1 + γ In)
γn In−1 = 2∆H

n I + 1
γ In−1 .     (12.5)

Dividing both sides by I,

∆I / I = 2∆H
n 1 + 1

γ In .     (12.6)

The above equation still makes no physiologically meaningful statement; it simply relates a change,
∆I, in stimulus intensity, to a corresponding change, ∆H, in entropy. There is nothing yet to render ∆I / I
interpretable as a Weber fraction. We are interested in the stimulus change per jnd. Therefore, it is
necessary to add an additional assumption to the list of 6 assumptions given in Chapter 9. I recommend

(7) The subjective magnitudes of all jnd’ s are equal.

The reader will recall that this assumption was originally due to Fechner [(Equation (3.2)]. We do
not, however, require the full complement of 7 assumptions for a description of the Weber fraction
because, due to the introduction of Equation (12.2), we have, effectively, dropped assumption (4).
Assumption (7) can, if desired, be relaxed (please see “ ∆H as threshold,” below).

In the discussion that follows, we associate each stimulus of magnitude, I, with a unique quantity of
information, the information that it could transmit to the receptor if the receptor were completely
unadapted to the stimulus; that is, the potential information of the stimulus. This concept was
introduced in the previous chapter, augmented by note 5 in that chapter. There is, further, a
double-stimulus approximation discussed below (“ On the Physical Meaning of ∆I ” ).

Letting the constant subjective magnitude of the jnd be ∆F, we can divide both sides of Equation
(12.6) by this quantity to give

∆I / ∆F
I = 2∆H / ∆F

n 1 + 1
γ In ,     (12.7)
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Figure 12.1 Weber fraction, ∆I / I, vs. stimulus intensity, I. Illustrates the basic shape of the
curve measured for various sensory modalities. ∆I / I is large for small values of I (even though
∆I is quite small). This component of the curve has been labeled “ power function component”
because it is described in Equation (12.6) by means of an In-term. Some investigators have
recorded only this part of the curve, and report a monotonically decreasing value for ∆I / I. For
larger values of I, ∆I / I approaches a constant. This component has been called the “ Weber
component” because Weber believed that ∆I / I was universally constant. Curves of exactly this
shape are seldom measured, but were, in fact, recorded by Knudsen and Riesz for audition. The
general shape is also found for taste receptors of insects. It is described by Equations (12.6) and
(12.16). A more usual shape for the Weber fraction curve is shown in Figure 12.2.

or, since
∆F = k ∆H ,     (12.8)

∆I / ∆F
I = 2

kn
1 + 1

γ In .     (12.9)

The expression (∆I / ∆F ) / I, introduced in Chapter 3, then, represents the Weber fraction in a
complete fashion: fractional change in stimulus intensity per jnd. However, we shall usually use the
form (12.6). ∆H is the informational differential threshold. Note that we have now incorporated both of
Resnikoff’ s requirements (Chapter 10).

With ∆H (= ∆F / k) taken as the constant informational cost of a jnd by assumption 7, above,
Equation (12.6) is a simple expression giving ∆I / I as a function of I. Equation (12.9), by the way, is
about as close as we get to the third analog of the ideal gas ((iii) above).

Equations (12.6), (12.7) or (12.9) define a theoretically derived function that describes the observed
shape of many Weber fraction curves. For smaller I, the second term on the right-hand side dominates
and ∆I / I is large. We must be careful, though, because as the fraction becomes large, ∆I → I, and the
finite difference approximation weakens. As I becomes greater, the second term on the right-hand side
approaches zero, and ∆I / I approaches 2∆H / n. That is,

Weber constant = 2∆H / n .     (12.10)
The general form of the function (12.6) is illustrated in Figure 12.1. The early, rising portion of the

curve is derived from the term γ In, so it might be called the power function component; the later
plateau in the curve, corresponds to Weber’ s law, Equation (3.1),

∆I / I = constant,

so it might be called the Weber component. The shape of these curves, early rise followed by plateau, is
of the type measured by Riesz (1928) for audition. Equation (12.6) cannot, however, describe the
terminal rise in the curve, the rise observed for larger values of I, as seen, for example, in the curves
measured by König for vision (Figure 3.6), or Holway and Hurvich for taste of sodium chloride (Figure
12.2).
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Figure 12.2 ∆I / I vs. I for taste of sodium chloride. The oft-cited data of Holway and Hurvich
(1937). Although no curve has been drawn in, the data conform to a curve of the type shown in
Figures 3.5a amd 3.6.

I can trace the history of the use of equations like (12.6) back as far as 1907, when a very similar
equation was used empirically by Nutting:

∆I / I = Pm + (1 − Pm) (I0 / I )n .     (12.1)

It was also used, in the same form, by Knudsen (1923) and an equation of exactly the same type as
(12.6) was used empirically by Riesz (1928). In the present work, Equation (12.6) was derived from the
general equation of entropy (12.1).

Békésy (1930) modeled the neural excitation process to obtain the equation

E = b log(1 + a
c J ) ,     (12.12)

where E is “ excitation” (potential), c is tissue salt concentration, J is sound pressure, and b is constant,
as is a / c. This equation is very close to our equation of entropy. Békésy gives credit to Alfred Lehmann
(1905)1 for the original derivation of Equation (12.12). Békésy then derived from Equation (12.12) our
Equation (12.6), with n = 1 and, referring to Knudsen’ s auditory data, showed that the measured Weber
fraction for frequencies of 200 and 1000 Hz were well fitted by this equation. Békésy’ s model is
summarized by Harris (1963). In Chapter 3, we followed Ekman’ s derivation of the n = 1 equation
(Equation (3.10)) and we learned that this equation may date back as far as Fechner himself.

Equation (12.4) can be cast into a new and useful form. From Equation (12.3),

1 + γ In = e2H .     (12.13)

Since
1
2 γn I n−1 = 1

2 (n / I ) (γ In) = 1
2 (n / I ) (1 + γ In) − 1

2 (n / I ) ,

therefore
1
2 γn I n−1 = 1

2 (n / I ) (e2H − 1) .     (12.14)

Introducing Equations (12.13) and (12.14) into (12.4),

dH
dI

= 1
2 (n / I ) e2H − 1

e2H

or

dH
dI

= 1
2 (n / I ) (1 − e−2H) .     (12.15)
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Again, going over into the ∆-form,

∆I / I = 2∆H
n

1
1 − e−2H .     (12.16)

This interesting equation gives the Weber fraction in terms only of the variable, H, or since
H = F / k, in terms of F. For example, for audition, ∆I / I is given solely in terms of loudness. Notice that
as loudness, H, becomes large, ∆I / I → 2∆H / n = Weber’s constant. As loudness decreases, ∆I / I
becomes larger, as seen in Figure 12.1 (Riesz type). Equations (12.6) and (12.16) are mathematically
equivalent.

Equation (12.15) is, perhaps, the most natural differential equation for the entropy. This equation
can be solved, by separating the variables, to give the entropy function, H (Equation (12.1)). The
constant γ emerges as a constant of integration.

DERIVATION OF THE POULTON-TEGHTSOONIAN LAW

This law (PT law henceforth), in which exponent plotted vs. stimulus range defines a rectangular
hyperbola, has been described in Chapter 3, Equation (3.27), and this is the perfect time to review it. I
think there is no better example of the power of the entropy equation than its ability of produce the PT
law in its totality, including the value of the constant. The law can actually be obtained, in part, by very
simple means, which I shall give first, followed by a second, somewhat more lengthy derivation which
provides the complete form of the law.

First, rather simply, writing the H-function in the “ Fechner” or semilog approximation (Equation
(10.5)),

H = 1
2 n ln I + 1

2 ln γ .     (12.17)

We recall that this approximation is valid only for γ In >> 1. Let us take two values for I, one close
to the physiological maximum, Ihigh, and one close to the minimum value for which (12.17) is valid,
Ilow. Then

Hhigh = 1
2 n ln Ihigh + 1

2 ln γ ,     (12.18a)

and
Hlow = 1

2 n ln Ilow + 1
2 ln γ .     (12.18b)

Then
δH = Hhigh − Hlow ,     (12.19)

or

δH = 1
2

n ln Ihigh / Ilow ,     (12.20)

from which, if Ilow is “ low enough,” we have approximately,

n � ln (range of intensities) = 2 δH .     (12.21)

We see that Equation (12.21) does describe the PT law [Equation (3.27)] formally, without,
however, providing a value for the quantity 2δH on the right-hand side. The reader can evaluate δH
using Equation (12.19) with the assumption that Hhigh >> Hlow.

The second derivation will achieve the same end using the concept of the jnd. Let us return to
Equation (3.14):

δN = Nplateau = ln 10
Weber constant

log10(Ihigh / Ilow) ,     (12.22)
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where δN is the number of jnd’ s contained beneath the plateau or Weber-region of the Weber fraction
curve. In the above equation we insert Equation (12.10), giving

δN = n ln 10
2∆H

log10(Ihigh / Ilow) .     (12.23)

Let Hhigh now be defined as the entropy of the maximum physiological stimulus, calculated from
Equation (12.3) (no approximation is used). Define Hlow as the entropy, calculated from Equation
(12.3) of the stimulus whose intensity marks the lower end of the plateau region of the Weber fraction.
As before (12.19),

δH = Hhigh − Hlow ,     (12.24)

but with the quantities on the right-hand side defined differently (now with respect to a plateau). Then,
since ∆H is the constant entropy span of one jnd (by assumption 7),

δN = δH / ∆H .     (12.25)

That is, we could “ fit in” δH / ∆H distinguishable stimuli beneath the plateau (see also Note 3).
Equations (12.23) and (12.25) now each provide expressions for δN. Equating the right-hand sides of
these two equations, and canceling ∆H from both sides,

δH (natural units) = n ln 10
2

log10(Ihigh / Ilow) .     (12.26)

Now, log10(Ihigh / Ilow) is the quantity defined for Equation (3.27) as the log10 range of stimuli
spanning the entire Weber fraction curve. Here we define this quantity as the range of stimuli spanning
the plateau region of the Weber fraction curve. Rearranging Equation (12.26),

(n)(log10 range) = 2 δH / ln 10 ,     (12.27)

so that we have, again, nearly derived Equation (3.27) except for the value of δH. The advantage,
however, in this second derivation, through the medium, as it were, of the Weber fraction, is that we
can provide a priori, an approximate value for δH.

The clue lies in Equation (12.25). Since ∆H, the informational value of the jnd, is constant, δH, is
proportional to δN, the total number of jnd’ s under the plateau of the Weber fraction. But we learned,
by experience, that the number of jnd’ s beneath the plateau is not a bad approximation of the total
number of jnd’ s, threshold to maximum physiological stimulus. For example (Chapter 3, The Weber
Fraction), in the analysis of Lemberger’ s data on the differential threshold of taste, there are 19.8 jnd’ s
beneath the plateau, and 21 jnd’ s under the whole of the analyzed curve (3 final values omitted). In
general, fewer that 30% of the total jnd’ s lie to the left of the plateau,2 so that

δNplateau is less than but approximately equal to δNtotal .     (12.28)

Therefore, from Equation (12.24), δH, which is defined equal to δHplateau, is less than but
approximately equal to δHtotal. But since Hlow is small,

δHtotal S Hhigh ,     (12.29)

and Hhigh has been shown to be a measure of the channel capacity of the modality, particularly in those
senses that adapt completely (Chapter 11). Therefore, with an element of approximation

δHtotal S 2.5 bits = 1.75 natural units of information,     (12.30)

where the 2.5 bits is the universal channel capacity (S log2 of the “ magical number” 6). (The same
value can be inserted for δH in Equation (12.21) to complete the first derivation of the PT law.)
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Inserting this value for δH into Equation (12.27),

(n)(log10 range) = (2) (1.75)
ln(10) = 1.52 ,     (12.31)

which is the PT law in a form very close to that discovered empirically by Teghtsoonian using data
assembled by Poulton. Since the value used for δH was a little too small (we used just the range of
stimuli spanned by the plateau region rather than the total stimulus range), we could really expect that
the “ correct” value for the constant would be 15-30% larger than 1.52. The near-perfect agreement is
probably fortuitous.

Note that Equation (12.31) is expected to be valid across the modalities, because of the nearly
constant value of the information content of a stimulus: 2.5 bits = 1.75 n.u. That is, (12.31) is an
inter-modality law. Whether it is an intramodality law, holding within a modality where n changes, for
example with frequency, remains to be thought through.

INFORMATION PER STIMULUS FROM WEBER FRACTIONS

In order to derive the PT law, we inserted an average value for the information per stimulus
(channel capacity) of 2.5 bits per stimulus. It is instructive, now, to proceed without using the average
value, but rather to calculate the stimulus information for each modality. There’ s nothing really new
here; we are just turning the problem around. Putting Equation (12.26) into words, we have

Information per stimulus (bits) = ln 10
2 ln 2

(power function exponent)

� (log10 stimulus range of plateau) .     (12.32)

If we now eliminate (log10 stimulus range of plateau) using Equation (12.22),
Information per stimulus (bits)

= 1
2 ln 2

(power function exponent)(jnds beneath plateau)

� (Weber constant) .     (12.33)

Since both of the above two equations utilize the plateau region of the Weber fraction, and the
plateau is, in practise, often difficult to define, it would be useful to find an equation for stimulus
information that does not require definition of the plateau. Such an equation was derived by the author
(1987):

Information per stimulus (bits)

= ln 10
2 ln 2

(power function exponent)(log10 total stimulus range)

− 1
2 ln 2

ln
Weber fraction just above threshold

Weber fraction at maximum stimulus
.     (12.34)

However, in eliminating the need to define the plateau in Equation (12.34) we may have gained
very little. We must now evaluate the Weber fraction close to threshold, where measurements are not
very accurate. Moreover, in the derivation of (12.34), the usual dI → ∆I has been used, which is barely
acceptable for larger ∆I.

Willy nilly, Equations (12.32), (12.33) and (12.34) are evaluated for 3 modalities: taste, vision and
audition in Table 1 of Norwich (1987). I think that all 3 equations fare reasonably well in providing
values for information transmitted per stimulus, but Equation (12.34) seems to be the weakest.

INVARIANTS IN MEASURING DIFFERENTIAL THRESHOLDS

We recall from Chapter 3 that measurement of the magnitude of the jnd was dependent upon the
statistical criterion selected by the experimenter (Figure 3.7). That is, there is no unique measurement
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of the size of the jnd. One might, then, ask how variables such as “ total number of jnd’ s beneath
plateau” can be used as a variable in an equation. The answer lies in Equation (3.14):

(δN) (Weber constant) = ln 10 � log10(range of stimuli) .     (3.14)

The right-hand side of this equation is independent of the measurement of the jnd. The left-hand
side contains the product (δN)(Weber constant). This product is, then, an invariant, which is
independent of the statistical criterion used to measure the jnd. Remember that the Weber constant is
equal to the value of ∆I / I under the plateau. As the criterion for measurement of the jnd becomes more
lax (for example, the 75% criterion of Chapter 3 becomes, say, 50%), the magnitude of the jnd, ∆I,
decreases, so that the total number of jnd’ s, δN, increases. But the product, (δN)(∆I ), remains invariant.
That is, δN can enter as a variable into a general equation governing sensory function as long as it is
multiplied by a “ balancing” factor, such as ∆I or the Weber constant.

ON THE PHYSICAL MEANING OF ∆IQ

One should understand clearly the distinction between ∆I and σ, as we have used them. ∆I
represents a change in the mean value of the intensity of a stimulus signal. σ2 represents a steady state
fluctuation in the instantaneous value of a stimulus, and is brought about by quantum effects and
internal biological variations [as discussed in Chapter 9, "Relationship between Variance and Mean"
(refer also to note 3 of Chapter 9)]. We, as investigators, can control ∆I ; we have no direct control over
σ2.

There is another very important distinction that must be made — this one concerning the manner or
mode in which ∆I is produced by the experimenter. This distinction is made very clearly for the case of
audition by Viemeister (1988, Fig 1), and for vision by Cornsweet and Pinsker (1965, Fig 2). In one
mode, the subject must detect which of two stimuli, I or I + ∆I, is the more intense. In a second mode,
the subject must detect a brief change, ∆I, in a continuously administered stimulus. It is the first of the
two modes that is encoded by our mathematical derivation of the Weber fraction. That is, we
incremented I by ∆I and took account or the corresponding increment in H, ∆H, to obtain Equation
(12.6). The method of Riesz is related to, but not exactly the same as, the second mode. My colleagues
and I have treated the second mode mathematically, in a preliminary manner, in a series of publications
cited below. However, in this book, we shall be concerned exclusively with the first of the two modes.

In both modes, in effect, two stimuli are administered, the second stimulus to a subject who may be
in a partially adapted state. This state of partial adaptation is not allowed for in our derivation of
Equation (12.6), which may introduce an error.

THE TERMINAL, RISING PORTION OF THE WEBER FRACTION CURVE

A number of investigators have reported measurements showing that the graph of ∆I / I vs. I either
approaches a plateau (Figure 12.1) or declines monotonically with increasing I, and we have treated
this case theoretically in Equations (12.6) or (12.16), corresponding to the first mode of stimulus
administration. However, measurements of ∆I / I more usually show a “ terminal rise.” That is, rather
than descending to a plateau, the curves fall in a gentle arc, and then rise again at higher values of I (see
Figure 3.6). This characteristic shape of the curve is common to many modalities of sensation. An
explanation for this terminal rise, based on the first mode of stimulus administration, was the substance
of a Masters thesis submitted by my student, Kristiina Valter McConville (1988). The theory was also
reviewed by Norwich (1991). However, because of its complexity, and because the values of the
parameters to and β required to make the theoretical equations match the observed experimental data
differed from the values of these parameters required in other equations, I have decided to omit the
derivation here. So, for the moment, we shall continue to regard the terminal rise of the Weber fraction
as a bit of a mystery, or, perhaps due to a saturation effect as one approaches the maximum
physiological stimulus.
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∆H AS THRESHOLD

The use, in this chapter, of the quantity ∆H to define a fixed quantity of information transmitted for
each jnd may be viewed as a modernized version of Fechner’ s conjecture of constant ∆F (difference in
subjective magnitude) for a jnd.3 We have, in effect, used ∆H as a threshold for discrimination.4

However, it is not, by any means, certain that ∆H = ∆F / k = constant is a valid statement.
A very clever technique for measuring the subjective magnitude of the jnd was devised by Stevens

(1936) in a paper that is seldom cited. Stevens measured loudness (subjective magnitude) as a function
of sound intensity; and he used Riesz’ s data (1933) to obtain total jnd’ s as a function of sound intensity.
He was then able to plot total jnd’ s against loudness, and found the relation (using F for loudness and N
for number of jnd’ s)

F = K N2.2 , K constant     (12.35)
or

dF
dN

→ ∆F
∆N = 2.2 K N1.2 .     (12.36)

That is, taking ∆N =1 jnd, the increment in subjective magnitude, ∆F, increased as N1.2. That is, ∆F
was not constant for hearing.

However, the jury is still out on this matter. I would like to see Stevens-type, dual experiments
performed with the same subjects: the first experiment F vs. I, and the second ∆I vs. I to give N vs. I.
Such dual experiments should be performed for a number of sensory modalities. From each pair of
experiments one could obtain plots of N vs. F, which would speak to the issue of the constancy of the
jnd. Assumption 7 (“ The Weber Fraction,” above) can be replaced by any equivalent statement of the
form: ∆F = experimentally determined function of I, giving rise to a variation of Equation (12.6).

WORKING TOWARD A COMMON SET OF PARAMETERS

It would be desirable, for each modality, to obtain a unique set of average values for at least the
parameters n, β, to and ∆H. Armed with these values (plus the value of one additional parameter which
we shall introduce in the next chapter) one could, in principle, predict the results of all experiments for
each modality that involve only a single, constant stimulus, applied for a specified period of time.
However, there are problems associated with the computation of these parameter values from published
experimental data. Investigators conduct experiments using varied techniques, and do not always report
all relevant experimental conditions. Moreover, if an investigator does not use a particular theory as a
guide to experimental design, he or she will not always control all variables critical to the evaluation of
the theory, or even report all relevant data. Theory is as necessary to the experimenter as experimental
results are to the theorist.

It is exceedingly difficult to bring together experiments performed by different investigators at
different epochs, under different sets of standards, and emerge from this amalgam with a consistent set
of parameters for a given modality. However, we shall try. Let us consider the sense of taste of sodium
chloride or saline solution. We have already analyzed several types of experiment involving the taste of
sodium chloride solution:

(1) The “ law of sensation” studies of Stevens (Figure 10.1) gave the value n =1.483, using Equation
(10.3). This value is a little higher than usually cited for n. We shall later use n = 1.0.

(2) The total number of jnd’ s for the sense of taste of sodium chloride for the 75% correct criterion
can be estimated from the data of Holway and Hurvich using the usual Equations (3.11) or (3.12). We
obtained the value of 9.35 jnd’ s, which seems rather small. Since the information per jnd is assumed to
be constant, this information, ∆H, may be estimated from the equation

∆H S
maximum information content of a stimulus

total number of jnd’ s
S 1.18

9.35
= 0.126 n.u.

That is, the value of the “ channel capacity” for the sense of taste tends to be about 1.7 bits or 1.18
natural units of information.

We shall add several more parameter values in the next chapter.
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PREDICTION: EFFECT OF ADAPTATION ON EQUAL LOUDNESS CONTOURS

Adaptation is expected, from informational considerations, to produce divergence of equal loudness
contours for reasons which can be seen directly from Equation (12.16). When loudness, F, is constant,
then, from (12.16), since H = F / k and ∆H = ∆F / k,

∆I ∝ I ∆F .     (12.36)

That is, if two tones are separated by a small constant loudness difference, ∆F, the corresponding
difference in the physical intensity of the two tones will vary directly with the intensity of the lower
tone (or, approximately with the mean physical intensity of the two tones). We can compare two sets of
two tones, the first given to an unadapted ear and the second to an adapted ear, where both (mean)
loudness, F, and difference in loudness, ∆F, is the same for both adapted and unadapted cases. Let Iu be
the (mean) sound intensity for the unadapted ear, and Ia be the (mean) sound intensity for the adapted
ear. Then, from Equation (12.36),

∆Ia ∝ Ia∆F
and

∆Iu ∝ Iu∆F .
Then, dividing these equations,

∆Ia / ∆Iu = Ia / Iu .     (12.37)

But, by the definition of adaptation, Ia > Iu . That is, it requires greater sound intensity to produce
loudness, F, in the adapted ear than in the unadapted ear. Therefore, ∆Ia > ∆Iu . That is, we can predict
that equal loudness contours will diverge, with adaptation to sound5.

In fact, measurements made by Békésy (1929) confirm the theory (Figure 12.3). Two tones of 800
Hz were presented to an unadapted ear. From his graph, we can determine that these tones were of
sound pressures of about 8.0 × 10−3and 7.0 × 10−2dynes / cm2. The ear was then adapted to a tone of
high intensity and long duration at 800 Hz. Two more tones were then presented to the adapted ear, of
sound pressures 3.2 × 10−1and 9.8 × 10−1dynes / cm2. The loudness of these two tones matched the
loudness of the previous two tones, so that both F and ∆F were equal. We notice, however, that

∆Ia = 9.8 × 10−1 − 3.2 × 10−1 = 6.6 × 10−1 ,

Figure 12.3 Data of Békésy (1929, Figure 1, at 800 Hz). ∆Iu and ∆Ia represent changes in
sound pressure of a tone delivered to an unadapted and an adapted ear respectively. The lower
boundary of ∆Iu sounds equally as loud as the lower boundary of ∆Ia, and the upper boundary of
∆Iu sounds as loud as the upper boundary of ∆Ia. That is, a tone at 8.0 × 10−3 dynes / cm2,
presented to the unadapted ear, sounds as loud as a tone of 3.2 × 10−1 dynes / cm2, presented to
the adapted ear. Similarly 7.0 × 10−2 dynes / cm2 (unadapted) is as loud as 9.8 × 10−1

dynes /cm2 (adapted). In units of dynes / cm2, ∆Ia > ∆Iu.
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while
∆Iu = 7.0 × 10−2 − 8.0 × 10−3 = 6.2 × 10−2 ,

where I is measured here in units of sound pressure. That is, ∆Ia > ∆Iu as predicted.

SUMMARY

Amid the swirl of equations in this chapter, one tends to forget that our aim in this endeavor is not
this algebraic relation or that numerical calculation, but rather to extract from the whole a tiny kernel of
wisdom. The kernel probably centers around the concept of constant ∆H as an informational threshold,
or informational differential limen.

The equation F = kH did not play a large role in this chapter, making only a cameo appearance in
Equations (12.7) – (12.9), and showing up for the finale on equal loudness contours. We used, nearly
exclusively, Equation (12.1),

H = H(I, t ) .

We introduced the condition that ∆H, a small, constant quantity of information, was necessary to
make a distinction between two stimuli of different intensity. Using this theme in several variations, we
were able to derive an expression for the Weber fraction, ∆I / I, as a function of I and t. Equation (12.6)
is probably its most practical form, giving the Weber fraction as a function of stimulus intensity. But
Equation (12.16) has some theoretical interest in that the Weber fraction is shown to be a simple
exponential function of stimulus entropy.

Through the medium of the theory of the Weber fraction, we were able to derive the
Poulton-Teghtsoonian law, nearly from first principles, including the value of the constant. We were
also able to demonstrate a property of equal loudness contours. We learned that while the jnd does not
have a unique magnitude, if multiplied by a balancing factor, it does give rise to an invariant form.

The informational differential threshold, ∆H, can, by its definition, be “ stacked.” That is N × ∆H =
channel capacity, where N is equal to the total number of jnd’ s.4

We observed in this chapter, for a second time, that the power function exponent, n, has appeared in
equations (for the Weber fraction) that have, ostensibly, nothing to do with the power law of sensation.
(Where was the first occasion when n appeared outside of the power law?6)

Since this chapter was largely bereft of the variable, F, there was no need to appeal to experiments
in which sensation was measured numerically. Although the exponent, n, was in that manner born, it
has now been shown to be a parameter which can be measured without reference to magnitude
estimation. As we proceed, we shall find n arising again and again in expressions having nothing to do
with subjective magnitude: equations for simple reaction time, for threshold detection, etc.

We derived, from the primary H-function, Equation (9.19) / (12.1), expressions for the Weber
fraction, bringing now three classes of sensory law under the umbrella of this fundamental equation; the
law of sensation, the principle of adaptation, and now the differential threshold. We completed the
analogs with the ideal gas law. However, we shall continue, now, to derive still more sensory laws from
the seminal Equation (9.19) / (12.1).

NOTES

1. The equation is derived neurophysiologically as Eq (1.1) of Lehmann’ s book (in German), and
appears in another context on page 250.

2. By calculating R = jnd’ s beneath plateau / total jnd’ s, the reader can establish for himself / herself
that R ≥ 0.7. In fact R is often greater than 0.85. There is, admittedly, a subjective element involved in
the calculation. It depends on where an ill-defined plateau is considered to begin and end, as well as on
just how great the physiologically maximum stimulus is taken to be.

3. The reader may also have noticed that the F = kH relation has not been used hitherto in this
chapter, except briefly in Equations (12.7) – (12.9). ∆F is, of course, equal to ∆H / k, so we have
replaced Fechner’ s ∆F = constant by ∆H = constant.

4. We have used the relation ∆H = Hmax / Nmax, which is an approximation. That is, ∆H multiplied
by the number of such ∆H’ s (Nmax of them) is approximately equal to the total range of H, zero to Hmax.

Information, Sensation and Perception.  Kenneth H. Norwich, 2003.



12. Differential Thresholds, Weber Fractions, and JND’s 142

5. In Figure 1 of their chapter, Keidel et al. (1961) indicate the opposite: “ Steps of equal loudness
correspond to smaller steps of sound pressure in the adapted than in the undadapted ear.” However, it is
possible that the authors refer to steps measured in logarithmic coordinates.

6. The first occasion in which we encountered the power function exponent in a place other than the
power law of sensation was when it appeared, unexpectedly, as a part of the Weber-Fechner law,
Equation (10.5).

Q . (2003 ed. note) In this section, I had confused modes in the first edition. So I have corrected the
error, as best I can, in the second edition. Our calculation refers to the first of the two modes.
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