
CHAPTER 13

SIMPLE REACTION TIMES AND THE
BLONDEL-REY LAWQ

INTRODUCTION

The process of deriving empirical sensory laws from an entropic or information theoretical base,
namely Equation (9.19), will be continued. However, I now deal with those processes that lie at the
limits of my understanding. I present matters here as well as I am able, but there are gaps in my
comprehension.

We recall that reaction time is the time between the onset of a stimulus and the beginning of an
overt response. Simple reaction time requires that a subject press a key or button immediately upon
detection of a stimulus. An excellent introduction to reaction times is given by P. Rabbit (1987). Simple
reaction time with Piéron’s empirical laws have been introduced in Chapter 3, and the Blondel-Rey
(-Hughes) law, together with the Bloch-Charpentier law, were introduced in the same chapter. Now is a
good time to review these various experimentally discovered laws, as well as the approximate law of
Laffort, Patte, Etcheto and Wright on olfactory thresholds, and the Ferry-Porter law. These various
empirical or phenomenological laws may seem to be strange bedfellows, unlikely to be directly related
to one another. However, it transpires that the laws are, indeed, closely linked theoretically and
mathematically. The same fundamental equation of entropy seems capable of generating all of them
with some degree of success.

There have been at least two full books published in the English language that are dedicated to the
study of reaction times, one authored by Welford (1980) and the other by Luce (1986). The present
chapter has very little in common with those works, emphasizing, as it does, the unification of reaction
time phenomena with other sensory effects, and the derivation of general laws of perception, not yet
taking into account the matter of interindividual differences.

Cattell (1886) perceived that simple reaction time decreases with increasing stimulus intensity.
Thus, for example, it requires less time to react to a bright light than to a dim one. Piéron captured this
idea by using a host of empirical equations, one of which is given by Equation (3.26). It might be
thought that this phenomenon (decreased reaction time with increased stimulus intensity) could be
accounted for by the principle of energy summation or temporal summation / integration. For example,
the intensity of light can be expressed as power, measured in watts which are joules per second. Then
the product of intensity with time is equal to the light energy propagated in that time. The light receptor
may summate this energy, permitting a reaction when the summated energy reaches some threshold
value. There are, however, problems with the energy summation hypothesis. It does not, to my
knowledge, lead to graphs of simple reaction time vs. stimulus intensity of the correct form. It will not,
for example, allow a derivation of the Piéron laws for simple reaction time (or, at least, I am not aware
of such a derivation). Moreover, energy summation does not seem to generalize easily to the chemical
senses. It does lead to a crisp explanation for the Bloch-Charpentier law, Equation (3.22), for light and
sound, but runs into difficulty with stimuli above threshold.

In the present chapter we replace the principle of energy summation by the principle of information
summation, an idea which we have begun to develop in the previous chapter. After exposure to a
stimulus, information begins to accumulate within the perceptual unit (a structure we shall formulate
progressively). When summated information reaches the threshold value of ∆H, reaction can take place
and conscious sensation can occur. This concept of an informational differential threshold, ∆H, is
extended from Chapter 12, where it was utilized as the quantity of information needed to discriminate

Information, Sensation and Perception.  Kenneth H. Norwich, 2003. 143



13. Simple Reaction Times and the Blondel-Rey Law 144

between two stimuli of different intensities. Now it is to be used as the quantity of information needed
to react. Many of these ideas were introduced by Norwich et al. (1989). As in Chapter 12, we shall not
really require the F = kH relation. Two new concepts of a fundamental nature will be introduced in this
chapter: the time delay factor, ξ, and the informational distinction between neuronal and behavioral
adaptation processes.

DERIVATION OF AN EQUATION GIVING SIMPLE REACTION TIME AS A
FUNCTION OF STIMULUS INTENSITY

We make use of the now-familiar concept, that after presentation of a steady stimulus there ensues
an adaptation process, and that as adaptation proceeds, entropy (“potential information”) falls, and
information is gained. Adaptation registers neurally in the afferent neurons, and adaptation to a
stimulus with constant intensity is described by the H-function (9.19),

H = 1
2

ln(1 + β In/ t ) = H(I, t ) .     (13.1)

As always, to is defined as the time at which H reaches its maximum value, and H decreases for
t > to. Let ∆H be the decrease in entropy between the times to and tr > to. That is,

∆H = H(I, to) − H(I, tr) .     (13.2)

If ∆H is the minimum quantity of information required to make a simple reaction to the stimulus of
intensity, I, then tr is equal to or less than the simple reaction time. We shall speak later about the
neuromuscular time lags which effectively guarantee that tr is less than simple reaction time, but, for
the moment, let us ignore this time lag.

Introducing Equation (13.1) into (13.2),

∆H = 1
2

ln(1 + β In/ to) − 1
2

ln(1 + β In/ tr) .     (13.3)

Solving for tr,

tr = 1
to e2∆H − 1 − e−2∆H

β In

−1

.     (13.4)

tr is taken as a function of I ; ∆H is taken as a constant threshold information.
Interestingly, while tr looks as if it depends on 4 independent parameters, β, to, n, and ∆H, it

depends, in fact, on only 3 independent parameters, which may be seen as follows. Let tr min be the
minimum possible value of tr. This minimum value will occur when the denominator on the right-hand
side of Equation (13.4) is maximum, which will, in turn, occur when I is maximum. Letting I → ∞ in
(13.4),

tr min = to e2∆H .     (13.5)

Let Imin be the minimum value of I for which a response is possible (threshold value of I). As
I → Imin, tr → ∞. That is, for I = Imin, the denominator of the fraction on the right-hand side of
Equation (13.4) approaches zero:

1
to e2∆H − 1 − e−2∆H

β Imin
n = 0 .

Solving for Imin,

Imin = to(e2∆H − 1)
β

1/n

,     (13.6)
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or, equivalently,

to e2∆H (1 − e−2∆H )
β = Imin

n ,     (13.6a)

or, introducing Equation (13.5),

(1 − e−2∆H )
β = Imin

n

tr min
.     (13.6b)

Introducing Equations (13.5) and (13.6b) into (13.4),

tr = 1
tr min

− 1
tr min

Imin
I

n −1

,

or

tr = tr min
1 − (Imin / I )n .     (13.7)

Equations (13.4) and (13.7) are mathematically equivalent, but from (13.7) we can see that tr

depends only on 3 independent parameters, tr min, Imin, and n.
We note, again, the appearance of the power function exponent, n. The ubiquitous n seems to

pervade all equations governing sensory function.
Equation (13.7), then, is put forward as the equation of entropy giving simple reaction time, tr, as a

function of stimulus intensity, I. We see that as I increases in value, tr becomes smaller, the universally
observed relationship between stimulus intensity and reaction time.

Let us return, now, to the thorny issue of the claim that the quantity tr has upon simple reaction
time. Is tr the simple reaction time? tr is, by definition, the time taken for the H-function, measurable in
an appropriate afferent neuron, to decline through a range, ∆H, natural units of information. This
adaptation process occurs before reaction to a stimulus can occur. But, presumably, after the
information, ∆H, has been transmitted to the brain, a signal must be sent via the motor neurons from
brain to muscle, after which the subject can signal her/his response. It would seem reasonable,
therefore, to define tR as the simple reaction time (from stimulus onset to the motor act of pressing a
button), and to set

tR = tr + tlag .     (13.8)

tr is, then, the time for the adaptation curve to register (in sensory neurons) a decline, ∆H, in
entropy, and tlag is the delay time taking account of conduction time to the cerebral cortex, through
motor neurons and synapses to muscle, and the contraction of muscle. Welford (1980) divides tR further
into four divisions, and Halpern (1986) further analyzes tr into components that are significant for the
human sense of taste. It would seem that tlag is an appreciable interval of time, so that

tR > tr .     (13.9)

If we introduce Equation (13.8) into (13.7),

tR = tr min
1 − (Imin / I )n + tlag ,     (13.10)

giving tR, a measurable quantity, as a function of I, with 4 independent parameters, the previous three
plus tlag. However, all attempts to curve-fit Equation (13.10) to simple reaction time data, using values
of tlag that are greater than zero, have failed. Various investigators in different laboratories have tried to
provide such a curve-fit, using simple reaction times to visual, auditory and gustatory stimuli, but none
has succeeded. Values obtained for the parameters are non-physiological (tlag or n negative) and are
inconsistent between different sets of data. On the other hand, when tlag is taken to be zero, as in
Equation (13.7), the results are usually quite satisfactory, as will be shown below. It is as if conduction
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BOX 13.1 An approach to the problem of conduction time

Suppose that neuronal conduction time is introduced by means of a multiplicative factor, rather
than by an additive term as in Equations (13.8) and (13.10):

tR = tr + tlag .     (B1)

That is, we let
to (neuronal) = ξ to (simple reaction time)     (B2a)

and
β (neuronal) = ξβ (simple reaction time),     (B2b)

where 0 < ξ < 1. Then to (s.r.t.) and β (s.r.t.) are the values of to and β obtained by measuring motor or
efferent responses in simple reaction time (s.r.t.) (Tables 13.1 and 13.2), while to (neuronal) and β
(neuronal) are the values of these parameters as they would emerge from analysis of adaptation data
obtained from afferent neurons. When I is dimensionless, that is, measured in units relative to
threshold, both to and β have the dimensions of time, so that Equations (B.2a) and (B.2b) suggest that
there is a change in time scale between the neuronal station and the behavioral station (afferent neuron
and simple reaction time).

The advantages of the transformation (B.2a) and (B.2b) are
(i) In explaining that tr min (neuronal), as obtained by Equation (13.5), becomes ξ to e2∆H, which is

less than tr min(s.r.t.), which makes sense due to conduction delays.
(ii) In showing why an equation of the form of (13.7) fits simple reaction time data so well despite

conduction time delays. That is, replacing to by ξ to in Equation (13.5) results in tr min being replaced by
ξ tr min in Equation (13.7). ξ tr min is simply curve-fitted as a single parameter. The delay is “built into”
the parameter, so to speak.

(iii) In showing why Imin (neuronal), as obtained from Equation (13.6), remains the same as
Imin(s.r.t.) when to and β are replaced by ξ to and ξβ respectively, which makes sense, because
minimum intensity for reaction should be independent of any time lags.

Since only tr min and not Imin changes under the transformation, Equation (13.7) is transformed into

tr(neuronal) = ξ tr min

1 − (Imin /I )n = ξ tr(s.r.t.).     (B3)

Equations (B.2a) and (B.2b) are, then, equations postulated purely ad hoc, in order to account for a
neural conduction time lag. They may be of use in converting time-dependent parameters to and β
measured in an experiment on simple reaction time for use in a situation where conduction lag does not
evidently occur.

The value of ξ will vary depending on which station is used to determine to and β. For simple
reaction time, I am guessing that ξ S 0.5. That is, about 50% of the minimum reaction time is due to
neuromuscular conduction time and 50% is due to the neuronal adaptation process. This value of ξ
seems to give tolerable results when used with simple reaction times to visual stimuli and sodium
chloride taste stimuli. Psychophysical or behavioral adaptation (decrease in subjective magnitude) also
lags considerably behind neuronal adaptation. I put it to the reader to suggest a value for ξ for
behavioral adaptation relative to neuronal adaptation.

The disadvantage to the use of Equation (B.2a) and (B.2b) is that the resulting Equation (B.3) is not
readily interpretable in terms of current understanding of the physiology of the nervous system.
Moreover, since β is increased for reaction time by Equation (B.2b), therefore, apparent sampling rate
is slowed. If fact, all time-dependent processes are slowed as we go from receptor to behavior, resulting
in a spreading out of the curve of simple reaction time along the time-axis – a kind of relativistic time
dilatation. Rosenblith and Vidale (1962, Figure 14) observed this phenomenon in responses to auditory
stimuli. Behavioral response times (reaction times) spanned at least 100 to 300 milliseconds, cortical
response times spanned about 10 milliseconds (see text as well as Figure 14), while earliest electrical
responses in the auditory nerve spanned only about 2 milliseconds. There is a mystery here, and
Equations (B.2a) and (B.2b) only transcribe the mystery into mathematical language. This “time
dilatation” with approximate preservation of the amount of information transmitted is demonstrated
explicitly in Figures 14.1a and 14.1b.
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in motor neurons occurred with infinite speed, which is, of course, absurd. It is particularly bizarre
because Helmholtz introduced the measurement of reaction time specifically as a means of measuring
neuronal conduction time, precisely the element that is here being ignored. The mystery may be linked
to the findings of Libet (1985), as discussed by Norwich et al. (1989).

Equation (13.7) fits simple reaction time data very well (the reader may wish to look ahead at
Figures 13.1 and 13.2). Because it is highly unlikely that neuronal conduction time can really be
ignored, and because an additive tlag as in Equation (13.10) just does not agree with measured data, I
suggest, tentatively, the modification shown in Box 13.1. This modification would allow for a time lag
due to conduction time, while preserving the algebraic form of Equation (13.7). The “true” or neuronal
values of to and β are diminished from their values as measured in reaction time data, using a
multiplicative reduction or diminution factor, but the diminution factors are identical. The true or
neuronal values are given by Equation (B.2) and (B.2a). All is not roses with this altered formulation,
but it is the best I can suggest at the moment.

In the analysis that follows, we shall use Equation (13.7) with tr identified with the measured
simple reaction time. However, if we attempt to obtain from reaction time data a value for to that is
compatible with data from sensory neurons, we shall probably have to use a diminution factor, ξ, as
suggested in Box 13.1.

DERIVATION OF ONE OF THE EMPIRICAL EQUATIONS OF H. PIÉRON

Piéron carried out extensive experimentation on simple reaction times for many sensory modalities.
He fitted his data to many equations of convenience (Piéron, 1914, 1920). Frankly, I haven’t even
attempted to derive most of these algebraic forms from the informational equation. However, the one
empirical equation that he presented in his text (Piéron, 1952) is easily derived from Equation (13.7), so
I present the derivation here.

Piéron’s empirical equation for simple reaction time is (Equation (3.26))

tr = CI−n + tr min ,     (13.11)

where C is constant. To derive it, we consider the case where

(Imin/ I )n << 1 .     (13.12)

The denominator of the fraction on the right-hand side of Equation (13.7) can then be expanded in a
binomial series:

[1 − (Imin / I )n]−1 S 1 + (Imin / I )n + . . .     (13.13)

retaining only the first order term. Hence, Equation (13.7) becomes

tr S tr min[1 + (Imin / I )n] .

That is,
tr = (tr min. Imin

n ) I−n + tr min ,     (13.14)

which is identical with Piéron’s Equation (3.26)/(13.11). Moreover, we can identify Piéron’s constant,
C, with the constant tr min � Imin

n . However, we must not forget that the derivation was based upon the
approximation (13.12).

THE CONSTANT ∆H FOR SIMPLE REACTION TIME

We do not know from a priori consideration the value of ∆H, the minimum quantity of information
necessary to react. However, I am prepared to put forward a conjecture based on a suggestion made
several years ago by L. M. Ward in a personal communication. The conjecture is that ∆H, the minimum
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quantity of information required to react to a stimulus, and, hence, the absolute informational threshold
for detection of the stimulus, is equal to Hmax, the channel capacity for that stimulus, as measured in a
neuronal adaptation process. That is, ∆H for reaction = (magical number) S ln(6) = 1.75 natural units,
or about 2.5 bits. I am making this conjecture because, as we shall see in the coming pages, it permits
us to make accurate predictions for the senses of taste, vision and hearing. However, the conjecture will
force us, for the first time, to make a definite distinction between neuronal and behavioral adaptation
processes.1

EVALUATION OF THE INFORMATIONAL EQUATION FOR SIMPLE
REACTION TIME

We proceed now to evaluate Equation (13.7) for two modalities: audition and vision. Later (see
“Compiling a Common Set of Parameters for Taste of Sodium Chloride”) we shall also evaluate
Equation (13.7) for the sense of taste of sodium chloride.

(i) Audition.

The data of Chocholle (1940) were analyzed. Subjects were requested to press a button as soon as
possible after a tone was sounded.2 The subjects were tested over a large range of sound intensities and
over a wide range of frequencies. For a given frequency, reaction time, of course, was observed to
decrease with increasing stimulus intensity. Chocholle’ s data for a 1000 Hz tone are listed in Table
13.1. I is given in relative units of sound pressure (lowest pressure = 1.00).

The data were fitted to Equation (13.7) using the least squares criterion, and the following
parameter values were obtained:

tr min = 0.117 s

Imin = 0.449

n = 0.439

    (13.15)

    (13.16)

    (13.17)

Table 13.1 Data of Chocholle, Subject I, 1000 Hz tone

Sound Pressure Reaction time(s) measured Reaction time(s) theoretical

1.00 x 105 0.110 0.117

3.20 x 104 0.110 0.118

1.00 x 104 0.112 0.118

3.20 x 103 0.118 0.119

1.00 x 103 0.124 0.121

320 0.129 0.124

100 0.139 0.129

31.6 0.148 0.138

10.0 0.161 0.157

3.16 0.192 0.203

2.51 0.218 0.220

2.00 0.248 0.243

1.58 0.276 0.275

1.26 0.312 0.320

1.00 0.398 0.394

Note: Theoretical values were calculated from Equation (131.8).
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With these parameter values in place, Equation (13.7) becomes

tr = 0.117
1 − 0.4490.439

I 0.439

= 1
8.55 − 6.01 I −0.439 .     (13.18)

Chocholle’ s data together with the fitted function, (13.18), are shown in Figure 13.1. We note that
the values for tr min and Imin are nominal, falling a little below the smallest measured values for tr and I
respectively. The value obtained for n, the power function exponent, is 0.439, close to, but less than, the
value of about 0.6 expected from psychophysical experiments. A similar result was reported by Marks
(1974).

Using the conductive delay factor suggested in Box 13.1, ξ = 0.5,

tr min (neuronal) = ξ tr min(s.r.t.) = (0.5) (0.117) = 0.059 s,     (13.19)

using Equation (B.3). Alternatively, we can write from purely neuronal considerations, to = 0.002 s
(from Yates et al., 1985, Figure 5), and ∆H = 1.75 natural units, using the “channel capacity”
conjecture, so that

tr min (neuronal) = to e2∆H = (0.002) e(2)(1.75) = 0.066 s.     (13.20)

(ii) Vision

The data of Doma and Hallett (1988) were used. Subjects were required to track a target visually.
The latency between the time the target moved and the time the eye moved was taken as a measure of
reaction time. Subjects were tested over a range of light intensities,3 for light of various wavelengths.
Doma and Hallett’ s data for yellow-green light (654 nm) are given in Table 13.2. Again, the intensities
are in relative units.

The data were fitted to Equation (13.7), which provided the following parameter values:

tr min = 0.149 s

Imin = 0.0332

n = 0.288 .

    (13.21)

    (13.22)

    (13.23)

Figure 13.1 Data of Chocholle (1940) (Subject 1, 1000 Hz tone). Simple reaction time to an
auditory stimulus. The data are listed in Table 13.1. The smooth curve was generated by
Equation (13.18).
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Table 13.2 Data of Doma and Hallett, Yellow-green light, 564 nm.

Intensity of light Reaction time (s) measured Reaction time (s) theoretical

100 0.163 0.165

31.6 0.173 0.173

10.0 0.185 0.184

3.16 0.208 0.203

1.00 0.239 0.238

0.794 0.244 0.248

0.631 0.262 0.260

0.501 0.277 0.274

0.398 0.291 0.291

0.316 0.305 0.312

0.251 0.335 0.337

0.200 0.364 0.369

0.158 0.414 0.411

0.126 0.475 0.476

0.100 0.543 0.547

Note: Theoretical values were calculated from Equation (13.24).

When these parameter values are inserted into Equation (13.7), we obtain

tr = 1
6.71 − 2.52 I −0.288 .     (13.24)

Doma and Hallett’ s data and the fitted function (13.22) are shown in Figure 13.2.
Again, the parameters tr min and Imin take on proper values, just below the corresponding smallest

measured values for t and I respectively. The value of n is 0.288, very close to the commonly quoted
value of 0.3.

We observe that the power function exponent, n, appears both in Equation (13.7) and in its
approximation, Piéron’ s equation (13.11) and (13.14). People have often mused about the enigmatic
appearance of an exponent of about the magnitude of the “Stevens” exponent appearing in an equation
for simple reaction time. We can now understand why it appears in this position.

Figure 13.2 Data of Doma and Hallett (1988) (Yellow-green light at 564 nm). Simple reaction
time to a visual stimulus. The data are listed in Table 13.2. The smooth curve was generated by
Equation (13.24).
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THE INFORMATIONAL BASIS OF REACTION TIMES

The above discussion is, of course, predicated on the assumption that a fixed quantity of
information, ∆H, must be transmitted before a subject can react. Note that evaluation of two
parameters, tr min and Imin, does not permit us to solve for unique values of the three parameters, β, to,
and ∆H. Nonetheless, as we shall see in our forthcoming analysis of the Blondel-Rey law, there is good
evidence that the same set of parameters will describe both types of experiment. We also find below,
that at least for the sense of taste of sodium chloride, we seem fairly close to having a single set of
parameter values that will describe and predict all experimental findings.

Here, as is the case with the many other sensory equations developed in this book, no allowance is
made for interindividual differences. Rather, a single equation is derived to represent a typical, or
perhaps averaged, result.

Please recall that here, as elsewhere, we are utilizing a kind of conservation law for information.
When ∆H units of information have been collected, a response is possible, etc. No mechanism for the
mediation of reaction is provided. The shorter reaction time observed for a more intense stimulus
follows from the properties of the H-function. Referring to Equation (13.1),

∂H
∂t

= −β / (2 t2)
1 / In + β / t

,     (13.25)

so that for a given t, the larger I becomes, the greater is the value of the derivative |∂H / ∂t| , and, hence,
the more rapidly does H decline. That is, stimuli of greater intensity transmit information at a greater
rate than stimuli of lower intensity.

The history of information theory as a means of explaining reaction time began some time ago
when information theory was young. Hick (1952) analyzed the choice reaction time (cf. simple reaction
time). A subject is required to make one selection from among m choices, for example by pressing one
lit key from among 10 keys. The choice reaction time was found to be proportional to log(m + 1), or,
approximately, to the information required to press the correct key, giving rise to Hick’ s law. Hyman
(1953) and Hellyer (1963) showed that the time required for a subject to react to a complex task is a
linear function of the number of bits of information involved in the task. Colin Cherry, in his
fascinating book (1957) describes and illustrates an experiment demonstrating Hick’ s law that the
reader can try for herself / himself. The experiment is attributed to J.C.R. Licklider. A simpler
experiment is suggested by Coren and Ward (1989), Demonstration Box 2-3. We can watch Hick’ s law
at work by analyzing the data of Merkel (1885), as reported by Coren and Ward, p. 39. Merkel’ s data
are plotted in Figure 13.3. It is seen that choice reaction time increases as the number of response

Figure 13.3 Data or Merkel (1885), demonstrating Hick’ s law. Choice reaction time is plotted
against number of alternatives. The smooth curve is the logarithmic function given by Equation
(13.26): if m is the number of alternatives, choice reaction time varies as log(1 + m).
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alternatives increases. The smooth curve was generated by the fitted function

choice reaction time = 270.74 ln(1 + m) ,     (13.26)

where m is the number of response alternatives.
An interesting application of information theory is found in the papers of E.T. Klemmer (1956,

1957). Klemmer showed that simple reaction time varies with the subject’ s uncertainty about the time
of stimulus occurrence.

Our present use of information in the analysis of simple reaction times differs from the above. We
generate simple reaction time curves based on the assumption that ∆H units of information are required
for a reaction, where H is a function purely of stimulus intensity. In the quantized view of stimulus
signals, more intense signals not only present greater uncertainty about the mean value of the signal,
but yield or give up their uncertainty more rapidly upon sampling than do less intense signals (Equation
(13.25)). In summary,

Hick: Subjects react more rapidly to simpler tasks because less information is required to
make a decision.

Norwich: Subjects react more rapidly to more intense stimuli because information can be
collected more rapidly.

COMPILING A COMMON SET OF PARAMETERS FOR TASTE OF SODIUM
CHLORIDE

Let us examine the constant, β, as it appears in Equation (9.19)/(13.1). The term β In/ t is added to
unity, so that it is a dimensionless quantity. That is, β has the dimensions of t / In. When intensity, I, is
measured in relative units, it, too, is dimensionless, and in this case β will have the dimensions of time.
However, when I is measured in more common laboratory units, such as moles per liter, the dimensions
of β become more complicated (Appendix). In this section, we shall work with simple, relative units of
concentration of sodium chloride, so that β will have the dimensions of time, and, specifically, be in
units of seconds. There is no curve-fitting in this section. We are trying to establish a plausible set of
parameter values.

There is evidence that the “time scale” or “time range” of adaptation-dependent processes increases
as one proceeds from the primary sensory afferents, through cortical events, to the behavioral or
psychophysical report of the subject. For example, an adaptation process that requires, say, 60
milliseconds to go to completion in an auditory ganglion cell, may require 60 seconds to go to
completion behaviorally. Such a change in time scale is allowed for the the ξ-factor (0 < ξ < 1)
introduced in Box 13.1. That is, to and β, as measured, say, in an adaptation process in a ganglion cell,
become to/ ξ and β / ξ respectively in a behavioral (psychophysical) adaptation process (decreasing
subjective magnitude with increasing time). Conversely, we can use the ξ-factor to convert the value of
to found in a (behavioral) experiment on simple reaction time to a neuronal to-value

to(neuronal) = ξ to(behavioral)     (13.27a)
and

β(neuronal) = ξ β(behavioral).     (13.27b)
For time in general,

t(neuronal process) = ξ t(behavioral process)     (13.28)

The result of such a transformation of variables is to leave invariant the quantity of information
transmitted by an adaptation process measured at any station between primary afferent neuron and
muscle effector (e.g. vocal activity providing psychophysical report), which may be seen
mathematically as follows. Between time, to, and any time, t,

H(neuronal) = 1
2

ln(1 + β In/ to) − 1
2

ln(1 + β In/ t ) .     (13.29a)
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Using Equations (13.27) and (13.28)

H(behavioral) = 1
2

ln(1 + ξβ In/ (ξ to)) − 1
2

ln(1 + ξβ In/ (ξ t )) .     (13.29b)

The latter two equations are identical since ξ cancels in Equation (13.29b), therefore,

H(neuronal) = H(behavioral).     (13.30)

That is, we measure the same quantity of information from a neuronal process as from a behavioral
(psychophysical) one. Moreover, from Equations (13.27a) and (13.27b),

β(neuronal) / to(neuronal) = β(behavioral) / to(behavioral).     (13.27c)

That is, the ratio β:to, whether measured neuronally or behaviorally, will be constant. The above
approach will suffice for current purposes, but for further work we must seriously regard the matter of
note 1, wherein the informational content of the two adaptation processes can differ.

Let us turn our attention now to ∆H, which is an informational threshold. We learned in Chapter 12
that ∆H = ∆F / k corresponded to that constant quantity of information transmitted with a change in
subjective magnitude of one jnd. While ∆H was constant for each subject, the magnitude of ∆H was not
fixed, but varied with the criterion used by the investigator to define the jnd. In the case of the Weber
fraction for the taste of sodium chloride solution measured by Holway and Hurvich, we found
∆H = 0.126 natural units.

The value of ∆H required for reaction to a stimulus, or the absolute detection of a stimulus, need
not be equal to a quantity of arbitrary magnitude determined by the method of the investigator. Rather it
can be determined by an average or mean, independent of any criterion imposed by the investigator
(other than pressing the button). We postulated above that ∆H for absolute detection is approximately
equal to the entire information capacity of the modality, or the channel capacity, represented by Hmax.
As we have seen, this value has been cited as about 2.0 bits for taste, 2.5 bits for audition, etc.4

Finally, then, the proposed universal values for taste of sodium chloride.
There is very wide variation in the values of n cited for taste of sodium chloride, extending from

about 0.5 to 1.4. I have selected here n = 1.0, but I encourage the reader to experiment with other values
of n. Other parameter values will change as n is changed.

Accordingly, ∆H (absolute detection) S 2.0 bits → 2 ln 2 = 1.39 natural units of information. ∆H
for discrimination of the jnd was taken as 0.126 natural units, the value we used in Chapter 12. There
is, of course, an arbitrary element to ∆H(jnd), as discussed earlier.

The problem is, then, to find a value for to(neuronal), which is the time following stimulus onset at
which a neuronal adaptation curve will have its maximum amplitude (action potentials per second).
Pfaffmann (1955) studied the response of neurons in the chorda tympani of the cat, dog and rat, and
reported: “ The activity of the chorda tympani initiated by applying taste solutions to the tongue is
typically an asynchronous discharge of impulses. For an electrolyte like sodium chloride, the latency of
the discharge is of the order of 30 msec; ...” This value, however, is too great to permit the
informational calculation of simple reaction times that are in accordance with the measurements made
by Bujas for human beings in 1935. A value of to = 0.015 s or smaller was necessary; to = 0.015 s was
adopted.

By inspection, because it tends to give the right answers, I selected β / to = 15, when intensity, I, is
measured in units relative to threshold = 1. Therefore, β = 0.225 s.

A proposed universal set of parameters for the taste of sodium chloride is, then

n = 1.0 β = 0.225 s to = 0.015 s.

∆H(absolute detection) = 1.39 n.u.

∆H(discrimination of jnd) = 0.126 n.u.     (13.31)

Using this parameter set, I submit, we can generate most, if not all, of the sensory functions of
tasted sodium chloride solutions. Let’ s check it out.
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(i) Computing the value of the Weber constant:

From Equation (12.6), the value of the Weber constant is given by 2∆H / n. Substituting from
(13.31) values for ∆H and n,

Weber constant = (2) (0.126) / 1.0 = 0.25 .     (13.32)

This value compares favorably with the approximate value obtained from Holway and Hurvich’ s
data, as shown in Figure 12.3.

(ii) Computing the equation relating simple reaction time to stimulus intensity:

From Equation (13.5), dividing by ξ to go from neuronal to behavioral,

tr min = (to/ ξ) e2∆H = (0.015 / 0.5) e(2)(1.39) = 0.48 s.     (13.33)

From Equation (13.6),

Imin = (to/ ξ) (e2∆H − 1)
β / ξ

1/n

.

ξ cancels, so that

Imin = 0.015 (e(2)(1.39) − 1)
0.225

1/1.0

= 1.0 relative units.     (13.34)

When the above values for tr min and Imin are inserted into Equation (13.7), the resulting curve can
be compared with the experimental data of Bujas (1935). The predicted curve is not bad at all. A better
fit to the data is obtained by making a small adjustment in the values of the parameters (best made
manually rather than by least squares) so that

tr min = 0.342 s,

Imin = 0.98 relative units.

    (13.33a)

    (13.34a)

Figure 13.4 Data of Bujas (1935). Simple reaction time to a gustatory stimulus (sodium
chloride solution). Intensity of the stimulus is plotted in concentration units relative to threshold
= 1. The smooth curve is plotted using Equation (13.7) with tr min = 0.342 s and Imin = 0.98
units, very close to the values obtained from the universal parameter set for taste of sodium
chloride, Equation (13.31). The smooth curve has not been curve-fitted to the data by a least
squares method (please see main text).
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The resulting curve, together with the data of Bujas are plotted in Figure 13.4. Notice that Equation
(13.7) cannot be properly fitted to the data by a least squares criterion applied to the ordinate only (that
is, computing sums of squares of errors using “ errors” in simple reaction time only, and ignoring
“ errors” in stimulus intensity), because of the extreme sensitivity of the curve-fit to the data point with
the lowest intensity. Tiny errors in the abscissa of this data point changed the parameters of the
curve-fit greatly.

Further analyses of Bujas’ data have been given by Norwich (1991).

(iii) Calculating the Weber fraction as a function of stimulus intensity:

From Equation (12.6),

∆I / I = (2∆H / n) 1 + 1
(β / t ) In .     (13.35)

Substituting Holway and Hurvich’ s t = 10 s, as well as values for β, ∆H and n from (13.31),

∆I / I = (2) (0.126)
1.0

1 + 1
(0.225 / 10) I 1.0 .     (13.35a)

If the above function is evaluated for I = 1 (threshold) to I = 160 (about 4 M solution), the result is
an approximation to the findings of Holway and Hurvich. The theoretical curve actually falls somewhat
more rapidly than Holway and Hurvich’ s curve (Fig. 12.2), similar to the curve of ∆I / I for sucrose
observed by Lemberger (Fig 3.5a). If the reader wishes to check the match of the theoretical curve to
Holway and Hurvich’ s data, I recommend changing concentration to molar units in the manner shown
in the Appendix. Threshold S 0.025 M so that λ = 40. However, we are lucky, indeed, to even have an
approximation here. We have used the neuronal value of β (What value of ξ should be used?), and have
utilized Equation (12.6), a mode II equation, to describe Holway and Hurvich’ s experiments which
were, in fact, conducted according to mode I (refer to Chapter 12, “ On the physical meaning of ∆I ” ).

(iv) Calculating the information transmitted by an adaptation process over t seconds:

Transmitted information for a hypothetical neuronal adaptation process is given by

H = 1
2

ln(1 + β In/ to) − Hmin .     (9.19) / (13.1)

Setting I = some intermediate value for concentration, say 10 relative units (corresponding
approximately to 0.1 M), and selecting values for β and n from (13.31),

H = 1
2

ln(1 + (0.225) (10)1.0/ 0.015) − Hmin

= 2.51 − Hmin natural units.

I do not know, a priori, the value of Hmin for neuronal adaptation to a sodium chloride solution, so I
can go no further. A value of Hmin S 1.3 n.u. would leave H at about the right value. That is, one would
expect that the steady state firing rate of the neuron would be about one-half of its maximum firing rate.

(v) Calculating the subjective magnitude as a function of time in an adaptation process:

Let us re-cast the adaptation data of Gent and McBurney, that we analyzed in Chapter 11, into
relative concentration units. The 0.32 M solution becomes 12.8 in units relative to threshold (S 0.025
M). The value of n obtained by Gent and McBurney for sodium chloride for their subjects was 0.5.
Then we must select the value of 12.86 seconds for β, so that β In becomes (12.86)(12.8)0.5 = 46.s,
which is the value we obtained by curve-fitting (see Chapter 11). If β = 15to (see above Equation
(13.31)), then to S 1 second for the taste of sodium chloride. Psychophysically, taste intensity curves
tend to rise for a few seconds (i.e. taste intensity builds for this time interval), so the calculated value of
to is, perhaps, tolerable.
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Again, we are not curve-fitting in this section. Rather we are trying to establish a plausible set of
values characterizing the sense of taste of sodium chloride in all its manifestations, and the set
suggested by Equation (13.31), with allowance made for the range of measured values of n, does seem
to merit consideration.

THE LAWS OF BLONDEL AND REY, OF HUGHES, AND OF BLOCH AND
CHARPENTIERQQ

While the intensities of stimuli for reaction time are at and above threshold, the intensities of
stimuli used to demonstrate the law of Blondel and Rey, etc. are precisely at threshold. “ How long,”
they asked, “ must a stimulus of intensity IU be held so that the stimulus is just perceptible?” However,
despite this shift in the scale of intensity values, from the point of view of the entropy theory, the
Blondel-Rey and its associated laws utilize the same variables and parameters as those used to define
simple reaction time: stimulus intensity, I, duration of stimulus, t, as well as β and n, to and ∆H. It
seems reasonable that ∆H, the minimum quantity of information required to perceive a stimulus in a
Blondel-Rey experiment, would be the same quantity, ∆H, needed to react in a simple reaction time
experiment, since if you can detect the stimulus you can react to it. However, there is room for error in
reasoning here.

Anyway, algebraically, the Blondel-Rey equation should be exactly the same as the equation for
simple reaction time, with the terms rearranged, since all variables and parameters are the same. Here
the unifying capacity of the entropy equation is in clear evidence. Let us just rearrange the terms in
Equation (13.7) while introducing (13.5):

(Imin / I )n = 1 − toe2∆H / tr .     (13.36)

In keeping with the nomenclature of Equation (3.25), let us replace tr by t, and Imin by I∞(which has
the same meaning), and I by Ithresh. Then

I∞ / Ithresh = (1 − to e2∆H / t )1/n     (13.37)

or

Ithresh / I∞ = 1 − to e2∆H / t
−1/n .     (13.38)

When
t >> to e2∆H ,     (13.39)

we can expand the right-hand side of Equation (13.38) in a binomial series and drop terms of order
higher than the first:5

Ithresh / I∞ = 1 + to e2∆H / (nt ) .     (13.40)

If we now set the constant, to e2∆H / n equal to a, we have

Ithresh / I∞ = 1 + a / t ,     (13.41)

which is the algebraic form of the Blondel-Rey law, Equation (3.25).
We have not really completed the derivation of the Blondel-Rey law (and its auditory analog which

we have called “ Hughes’ law” ), because the variable, t, which appears in Equation (13.41) represents
time since stimulus onset, while t in Equation (3.25) represents the duration of the flash. These two
times are not equal, the former, time since stimulus onset at which information, ∆H, is transmitted via a
neuronal adaptation function, will be greater than the latter, the duration of the flash. Therefore, the
Blondel-Rey constant has been derived to be not less than

a = to e2∆H / n

= tr min / power function exponent.

    (13.42)

    (13.43)
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That is, the Blondel-Rey constant, in our unified system of equations for sensation, is approximately
equal to the ratio of the minimum reaction time to a visual signal to the power function exponent
(“Stevens exponent”) for vision. We can test the theory partially for at least one set of data, the simple
reaction time data of Doma and Hallett (Table 13.2). Using the value of tr min = 0.149 from Equation
(13.21) multiplied by the conduction factor, ξ = 0.5 (taking us from behavioral to neuronal adaptation),
and power function exponent for a point source on dark background = 0.5 (Coren and Ward, Table
2.11), we have from Equation (13.43)

a = (0.5) (0.149) / 0.5 = 0.149 s,     (13.44)

or, from first principles, to(neuronal) S 0.002 s (value from audition6,QQQ); ∆H = 1.75 n.u.;

a = to e2∆H / n = 0.13 s.     (13.45)

Since t (stimulus duration) < t (since onset) = bt, where b < 1, “ true a” = a / b > a, referring to
Equation (13.41). The range of values measured for the Blondel-Rey constant is given by Williams and
Allen (1977, p. 43) as 0.055 to 0.35, so the values calculated by Equations (13.44) and (13.45) are in
accord with the measured values.

Now, we may recall from Chapter 3 that Blondel and Rey observed that their law contained the law
of Bloch and Charpentier. That is, in Equation (13.41), when t is very small, the second term on the
right-hand side dominates, so that

Imin / I∞ = a / t ,

which is the Bloch-Charpentier law. Therefore, since we have derived Equation (13.41), we can do the
same thing, thereby also deriving the Bloch-Charpentier law. Right?

Well, almost right. Don’ t forget that we have used inequality (13.39) in order to derive (13.41). If
we let t become too small, that is, if we use stimulus durations that are too brief, we shall violate this
inequality. Again, taking to S 0.002 s. and ∆H = 1.75 n.u., we have to e2∆H = 0.066 s, so that by (13.39)
we must have t > 0.066 s, and preferably t >> 0.066 s for validity of our derivation, while the
Bloch-Charpentier law is, apparently valid experimentally for flashes much briefer than 0.066 s. Again,
we must make allowance for the fact that t > tflash.

THE BLONDEL-REY LAW AND THE FERRY-PORTER LAW

We have seen in the previous section how we were able to transform the equation for simple
reaction time into the Blondel-Rey law by simple algebraic manipulation. When the variables are the
same and the parameters are the same, the laws must be mathematically identical. We shall try the
same trick with the Ferry-Porter law, but we are in deep water – perhaps too deep. We deal here not
with a single stimulus, but with multiple, sequential stimuli (flashes), which the entropy equation,
(13.1), was not constructed to handle. Between flashes, there is a process of dark adaptation, which is
beyond our theoretical grasp at this moment. We must continue to deal with the variable, t, which is the
time since stimulus onset rather than the flash duration. And we shall attempt to derive the curve for
pure cone vision in the central fovea, although we lack definitive knowledge of the relevant ∆H-values.
However, the game can be fun anyway. If you would like to follow me where angels would, no doubt,
fear to tread, please read on.

Again, a change in nomenclature. Let us represent Ithresh simply as I.
Then, Equation (13.40) becomes

I / I∞ = 1 + to e2∆H / (nt ) .     (13.46)

When

to e2∆H/ (nt ) << 1     (13.47)

(cf. Equation (13.39)), then, using a Taylor series, we can approximate the right-hand side of Equation
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(13.46) by an exponential function:

I / I∞ = exp to e2∆H

n
1
t .     (13.48)

Taking logs of both sides,

ln I − ln I∞ = to e2∆H

n
1
t ,

or
(1/ t ) = (n / to e2∆H ) ln I − (n / to e2∆H ) ln I∞ .     (13.49)

Ignoring, for the moment, the distinction between t and flash duration, we write, for a flashing light
with equal times for “ on” and “ off,”

frequency = 1/ (2t )     (13.50)

critical fusion frequency [CCF] = (n / 2to e2∆H )(1/ log10e) log10I

− (n / 2to e2∆H ) ln I∞ .     (13.51)

This equation, then, does give the correct algebraic form of the Ferry-Porter law,

CFF = c1 log I + c2,     (3.30)

and provides theoretical values for the constants, c1 and c2.
Informationally, Equation (13.51) states that a minimum time, t, must pass in order that a flash of

intensity, I, may transmit a quantity of information, ∆H. If this criterion is met, the flash can be
discriminated, or seen “ crisply.” If the duration of time is less than t, the minimum “ quantum” of
information, ∆H, will not be transmitted, and the flash either will not be visible or will merge with the
next flash. A complete informational treatment of the Ferry-Porter law must take account not just of a
single flash, but of the repetitive sequence of flashes and the process of dark adaptation between
flashes. Such analysis is beyond the current scope of the theory. A complete theory must also take into
account the distinction between duration and time since onset.

The slope of the straight line defined by Equation (13.51), obtained by plotting CFF against log10I,
can be evaluated in one of two ways: to e2∆H can be evaluated from reaction time data, or from first
principles.

(i) Using data from simple reaction time with Equations (13.5) and (13.21),

to e2∆H = ξ tr min = (0.5) (0.149) = 0.0745 s.

The ξ carries us from behavioral to neuronal. Again taking n = 0.5, the slope

(n / 2to e2∆H )(1/ log10e) = 7.73 s−1(s.r.t.)     (13.52a)

(ii) From first principles, to e2∆H = 0.002e(2)(1.75) = 0.066 s.
so that

(n / 2to e2∆H ) (1/ log10e) = 8.72 s−1 (first principles).     (13.52b)

Hecht (1934) suggested that the observed values for slope tend to cluster about 11 s−1 for images on
the central fovea (no statistics were given), so the theoretical values are quite close.

We notice that, in theory as well as by experiment, the slope of the straight line in the Ferry-Porter
law plotted using common logs is approximately equal to the reciprocal of the Blondel-Rey constant
(comparing Equations (13.40) and (13.51) and noting that 2 log10e S 1).

Again, here as elsewhere, we are plagued by the necessity of merging the results of experiments
that are not quite compatible. We should value the results of a study on simple reaction times to light
restricted to a narrow beam on the fovea, or 5 degrees peripheral to the fovea, in order to calculate the
slopes of Ferry-Porter plots made for the same retinal locus.
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We observe that Equation (13.51) is valid, strictly speaking, only for values of t permitted by
inequality (13.47); that is, t of the order of 0.13 s or greater (Equation (13.45)), corresponding at most
to 3 Hz (!?). However, the Ferry-Porter law is observed experimentally to be valid for frequencies as
high as about 50 Hz. That is, the theoretical equation, (13.51) is valid over a range of frequencies much
greater than we had any legitimate reason to expect. The theoretician’ s problem is usually quite the
opposite of this: one can often not find experimental verification over the range of values for which an
equation was derived. Resolution of this paradox may lie in the same quarters as before:
tflash < t = tneuronal.

The above theoretical derivation of the Ferry-Porter law is very brief, requiring only about one page
of development beyond the Blondel-Rey law. The reader is reminded, however, that this a kind of
conservational derivation, dealing with limits upon the rate at which information from a photon beam
can be transmitted to a photoreceptor. A good deal of study has been made, and is being made, of the
excellent papers of E. Hisdal, in an effort to improve the theory as it is presented here. The brevity of
the theory, as put forth above, may be been taken to imply that the author is ignoring the truly
prodigious number of scientific papers dealing with flickering lights and the mechanism of flicker
fusion phenomena. These papers have not been ignored: the diffusion theory of Ives (1922), the
photochemical theory of Hecht and Verrijp (Hecht and Verrijp, 1933; Hecht, 1934, 1937), the
multiple-stage models of Kelly (1961), and many more recent efforts. The reader is reminded that the
informational approach does not compete with these models of mechanism; it complements the models
of mechanism. The informational approach provides restrictions or guidelines governing the
development of mechanisms of any perceiving system. Mechanisms of perception and sensation must
develop (evolve?) within the limitations imposed by information transfer.

BRIGHTNESS ENHANCEMENT

“ Brightness enhancement” refers to “ an increase in the brightness of an intermittent light over that
of a steady light of the the same luminance” (Graham, 1965). I have not even attempted to treat this
phenomenon mathematically. Let me just remind the reader that within the informational or entropy
theory, variance of light samples, rather than their mean, is the determinant of brightness. Therefore, a
flickering light should, at appropriate frequencies of flicker, indeed, appear brighter than a steady light
of the same luminance, since the flicker can in principle increase the variance of samples from the light
beam.

OLFACTORY THRESHOLDS

To conclude this chapter, we make a very approximate derivation of what is, in fact, a very
approximate law, given by Equation (3.29). Taking common logs of both sides of Equation (13.6) and
multiplying through by n, gives

n log10Imin = log10[to (e2∆H − 1) / β] .     (13.53)

Is there any reason to think, now, that the quantity of the right-hand side of this equation should be
approximately constant for all odorants? We could argue the matter on theoretical terms, but I think the
result would be inconclusive. The best one can say at the moment is that if to(e2∆H − 1)/β is constant
and equal to K, then

− n log10Imin = K .     (13.54)

Using the definition of pol from Equation (3.28), we have

(n)(pol) = K ,     (13.55)

which provides a derivation of Equation (3.29), the approximate law discovered experimentally by
Laffort, Patte and Etcheto, with support by Wright.
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CONCLUSIONS

In this chapter, we have pushed the entropy theory to its current limits to derive, among other
sensory phenomena, simple reaction time as a function of stimulus intensity, the Blondel-Rey-Hughes
law, the Bloch-Charpentier law, and the Ferry-Porter law (in part only).

One of the promising results of this chapter, I think, is the set of parameters characterizing the taste
of sodium chloride (Equation (13.31)). A time-lag factor, ξ, may have to be employed (or a more
cleverly formulated device that will allow for conduction delays), but, by and large, this parameter set
has permitted us to account, in a quantitative way, for the results of nearly all sodium chloride taste
experiments known to this author that involve a single, pure NaCl stimulus. It will be instructive to see
if this data set will be capable of predicting the results of experiments not yet performed or unknown to
this author. The theory presented does not seem to be capable of explaining the increase in simple
reaction time with increasing taste stimulus duration reported by Kelling and Halpern (1983).

Perhaps the chief complexity introduced in this chapter relates to time scales. There were two
distinct problems:

(i) Relating the time scale of behavioral events (such as simple reaction times) to the time scale of
neuronal events (such as the adaptation in impulse rate at a ganglion cell). These scales have been
related by means of the factor ξ, introduced in Box 13.1. The use of this factor is not completely
satisfactory from the theoretical point of view, but it does seem to work.

(ii) Relating the time scale of neuronal events to the time scale of stimulus events (that is, time
since onset to duration of stimulus). One must be mindful of the lessons taught in this regard by Ward
(1991) psychophysically, and by Wasserman and Kong (1974) neurophysiologically. Nonetheless, the
algebraic forms of the laws of Blondel-Rey, Bloch-Charpentier, and Ferry-Porter have emerged,
complete with theoretical derivations of their respective constants, when “ time since onset” replaces
“ duration of stimulus” in the respective equations.

As we press the variables I and t through their complete physiological range of values, the question
of the constancy of the parameters must be examined. If the parameters n, or β were found to be
functions of I, the formulation of the H-function as it was given in Chapter 9, would have to be
reexamined. Whether to is a function of I is a moot point. Burke et al. (1987) found psychophysically
for sodium chloride, quinine sulfate and citric acid stimulation of the anterior tongue that “ Higher
intensity ratings were associated with faster onset times ...,” while Travers and Norgren, recording
electrophysiologically in the nucleus of the solitary tract in rats (1989, Figure 2), seemed to show the
opposite for sodium chloride stimulation of the anterior tongue and nasoincisor ducts.

We are approaching the end of our experimental evaluation of the entropy theory. Only some brief
remarks on the exponent, n, remain for the next chapter. Although we have encountered the current
limits to the theory in this chapter, one should not forget the extraordinarily wide range of observed
sensory effects that have been captured by the theory: General sensory principles expressed by the law
of sensation, the principle of adaptation, the Weber fraction and simple reaction time; and the
derivation of a host of special empirical laws, which we shall not enumerate here.

APPENDIX: CHANGING THE UNITS OF THE PARAMETER β

Since β occurs always in the combination β In/ t, and β In/ t is dimensionless [occurring, as it does,
in log(1 + β In/ t )], the dimensions of β are those of t / In. That is, if we alter the units in which either I
or t are measured, we must alter the value of the constant, β, accordingly.

Consider particularly a change in the units of I from I to IU. Suppose the change in units is governed
by the constant, λ, so that

IU = λ I .
Then,

β In = β U(IU )n = β U(λ I)n = (β Uλn) In .
That is,

β U = β / λn .
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For example, for taste of sodium chloride, with n chosen as 1.3, if I is measured in molar units, and
IU is measured in units relative to threshold = 1 unit, then λ S 100 (since threshold is approximately
0.01 M). Thus,

β U = β / 1001.3 .
That is

β (with I in relative units) = 0.0025 β (with I in molar units).

β (with I in relative units) will have the dimensions of time.

NOTES

1. The adoption of ∆H for reaction = Hmax compels us to make a distinction between the neuronal
and behavioral adaptation processes, which we have hitherto regarded as “ equivalent,” adopting the
symbol F to represent both. When we analyze behavioral adaptation data, such as those of Gent and
McBurney (1978), we find examples of perceptible stimuli that transmit fewer than Hmax bits of
information, which would not be possible if Hmax were the threshold for absolute detection. Hence my
insistence that Hmax units of information be transmitted by the corresponding neuronal adaptation
curve. Thus we have postulated a distinction between the two types of adaptation process: the neuronal
process transmits a minimum of Hmax units of information, while the behavioral process may reflect the
transmission of less information. Evidence in support of this position may be found in Figures 11.6 and
11.7, which each depict neuronal adaptation curves for stimuli of 3 different intensities. In each of the
three curves of Figure 11.6, (Fmax − Fmin) has about the same value. Similarly, in each of the three
curves of Figure 11.7, (Fmax − Fmin) has about the same value. That is, the curves do not adapt to
extinction. Since information, ∆H, is equal to (Fmax − Fmin) / k, therefore, approximately the same
quantity of information is transmitted by the three stimuli of different intensities that generated each of
the three curves. The three curves have different amplitudes, signifying different stimulus intensities,
but transmit nearly the same quantity of information.

2. There are many variations in the way experiments to measure simple reaction time are carried
out. For example, ready signals my indicate an impending stimulus (Kohfeld, 1969; Botwinick and
Storandt, 1972).

3. The term “ light intensity” is being used rather glibly here, where proper photometric units should
be used. Preferable in most instances would be illuminance (millilamberts) or, perhaps retinal
illuminance (Trolands).

4. There are at least two problems that issue from the use of the absolute informational threshold,
∆H. One is that the threshold intensity, I∞, cannot, strictly speaking, be determined by eliciting an
infinite reaction time. It can be determined, classically (e.g. Galanter, 1982), as the weakest stimulus
that can still be detected (“ reacted to” ) 50 percent of the time. Modulating factors can be allowed for
using signal detection theory. Alternatively, one can use neural-quantum theory (e.g. Stevens, 1961, pp
806-813). The second problem deals, perhaps, with even more profound issues. The two informational
thresholds, ∆H (discrimination of jnd), and ∆H (absolute detection), have been found to differ
substantially in magnitude of information. However, we can argue that ∆H (absolute detection) is, in a
sense, the first or lowest jnd – that is, it is the amount of information needed to discriminate the
smallest perceptible signal from the zero signal. Why should this jnd require a greater quantity of
information than subsequent jnd’ s? There is something unique about the “ first” jnd which I cannot, at
this moment, understand.

5. We note that Equations (13.40) and (13.41) are independent of the parameter β, depending only
on the parameters n, to and ∆H.

6. We note that in writing Equations (13.44) and (13.45) no distinction has been made between the
parameters characterizing photopic and those characterizing scotopic vision.

2003 ed. notes:
Q . Simple reaction time, has, perhaps, undergone the greatest modification during the 11 years,

1992 to 2003. While maintaining the same general form for tr, the parameter, β, has vanished,
permitting us to evaluate the critical information “ quantum” , ∆H, in several ways. The new value
differs from the old, so that the set of parameters characterizing the taste of sodium chloride will
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change accordingly. However, the philosophy of approach to simple reaction time remains intact: one
can react when he/she has received at least ∆H units of information.

Q Q . The derivation of the laws of Blondel and Rey and of Ferry and Porter can now be carried out
somewhat more simply and briefly. The extent and effects of approximation can be shown more
clearly. The derivation of the Ferry-Porter law has been improved considerably, and insight into the
meaning of this law has been enhanced. The new derivation leads to a somewhat different algebraic
form for the law. However, again, I retain the original derivations in this second edition of ISP.

Q Q Q . Not correct. I discovered several years after ISP had been published that the value of t0 for
vision seemed to be somewhat greater than 0.002. As mentioned above in note Q , the value of ∆H has
also been changed. So this entire calculation must be corrected. I retain the original calculations here,
as the best that could be done in 1992-3. The same correction will have to be applied to Equation
(13.52b): both t0 and ∆H will have revised values.
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