
CHAPTER 3

THE EMPIRICAL LAWS OF
SENSATION AND PERCEPTION

In this chapter, we set down the weighty ballast of philosophy and information theory, and examine
the somewhat lighter matter of the empirical rules of sensation and perception. By empirical laws we
mean (Webster’s dictionary) laws “making use of, or based on, experience, trial and error, or
experiment, rather than theory or systematized knowledge.” For somewhat more than one hundred
years, beginning (probably) with the work of Weber, empirical laws of sensation have been formulated.
These algebraic rules, based essentially on laboratory observations, relating only occasionally to each
other, and not derived theoretically from laws in other sciences, have dominated the scientific
literature. Each empirical law stands as a universe unto itself: it is neither derived from any simpler
principle, nor does it lead to the generation of other laws. Each law has absolute dominion over its own
territory. Such is the state of scientific polytheism that we now describe.

The reason for introducing these laws early in the book is that they provide, so to speak, grist for
the mill. We shall endeavor, as the informational theory of sensation is developed, to provide
theoretical derivations for all of these empirical laws. It is probably better to introduce them earlier and
in a group, rather than later as they are invoked.

Some of the empirical laws carry the names of their originator; some, such as “the exponential
decay” of this or that quantity are just rules of thumb. We are not concerned with all of these rules, but
only a subset of them. In particular, we shall be interested in those empirical laws that govern the
relationship between three fundamental variables: I, the steady intensity of a stimulus; t, the time since
onset of the stimulus, or, occasionally, the duration of this stimulus; and F, the perceptual variable
related to the stimulus. F, you will recall, was defined in Chapter 2. As mentioned in the Introduction to
Chapter 1, all stimuli with which we shall be concerned here are steady, or constant stimuli, given in
the form of a step function (Figure 1.1). While stimuli that vary with time are of very definite interest,
for example those that may vary sinusoidally, their formal treatment is more difficult within this
informational or entropic theory, and such progress as has been made with these stimuli will not be
reported here. Neither do we grapple with the effects of multiple stimuli that are applied concurrently.
So we shall not deal, for example, with the sweetness of a solution of two types of sugar, or with the
effect of a masking sound on a pure tone.

With these restrictions in mind, let us examine eight types of experiment performed by
physiologists, psychologists and physicists that give rise to well-known empirical equations of
sensation. In each case in which the perceptual variable, F, occurs, recall from Chapter 2 that it can be
interpreted both psychophysically, as a subjective magnitude (e.g. brightness), and physiologically, as a
rate of impulse propagation in a neuron. In Chapter 13, we shall begin to distinguish mathematically
between these two interpretations.

THE LAW OF SENSATION

When F is interpreted psychophysically, this law is sometimes referred to as “the psychophysical
law.”

Ernst Heinrich Weber (1795 — 1878) (pronounce VayUber) was a German physiologist who was
professor of anatomy and later of physiology at Leipzig (Gregory and Zangwill, 1987). He drew
attention to the ratio ∆I / I, where ∆I is the smallest difference between two stimulus intensities that can
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3. The Empirical Laws of Sensation and Perception 16

be discriminated. Wrote Weber (in translation):1 “ ...in observing the difference between two
magnitudes, what we perceive is the ratio of the difference to the magnitudes compared” (Drever,
1952). Together with Fechner, he asserted, after much experimentation on lifting weights,

∆I / I = constant,     (3.1)

where the constant is known as Weber’s constant. We call the empirical law (3.1) “ Weber’s Law.”
Gustav Theodor Fechner (1801 — 1887) (pronounce Fech U − ner, ch as in loch) was a German

physicist who is remembered largely for his work Elemente der Psychophysik (1860). Fechner
augmented Equation (3.1) by equating the constant on the right-hand side with ∆F, a just noticeable
difference in sensation (The F is my symbol, not Fechner’s). More specifically, the equation attributed
to him is

∆I / I = ∆F / a     (3.2)

where both a and ∆F are constants. Implicit in Equation (3.2) is that a variable, F, can legitimately be
defined to quantify human sensation or feeling. Assigning numerical measure to a sensation is rather an
audacious suggestion. Equation (3.2) then asserts that if the physical magnitude of a stimulus is
changed by ∆I, where ∆I is the smallest change detectable by a human subject, then the corresponding
change in sensation, ∆F, will always be constant. The just noticeable difference is abbreviated to jnd.
Fechner’s argument is often stated as follows.

If ∆I and ∆F are small changes in I and F respectively, they may be replaced in Equation (3.2) by
dI and dF respectively

dI / I = dF / a .     (3.3)

Integrating both sides of Equation (3.3),

F = a ln I + b, b constant,     (3.4)
or

F = aU log I + b ,     (3.4a)

where aU is constant and the logarithm may be taken to any convenient base, say 10. That is, when F is
plotted against the logarithm of I, the result expected is a straight line. This is Fechner’s law, or the
Weber-Fechner law. A discussion of “ Fechnerian integration” and related topics is given by Baird and
Noma (1978, Chapter 4). The problem of measuring the quantity, F, is very taxing and has occupied
psychophysicists for many years. This problem is discussed in an introductory manner by Coren, and
Ward (1989), and in more detail by Baird and Noma (1978). More about early attempts to quantify
sensation, and about the legitimacy of Fechnerian integration is given in the first chapter of Marks’
book (1974).

The result of Fechner’s law is that if “ suitable” measure for F can be found, a graph of F against the
logarithm of I (to any base) is expected to produce a straight line. That is, for a given modality, plotting
experimental values of F against the corresponding values for the logarithm of I should give the result
that the data points lie on a straight line whose slope is aU and whose y-intercept is b. Fechner’s law
might be called a semilogarithmic law, because data array linearly when F is plotted on a linear scale
while I is plotted on a logarithmic scale. There are many examples in the published literature of
measured data that conform to Fechner’s law.

While F was interpreted psychophysically by Fechner, we recall again from Chapter 2 that F may
also be interpreted neurophysiologically as the frequency of impulses in a sensory neuron. In the
well-known paper by Hartline and Graham (1932) also cited in Chapter 2, a single light receptor
(omatidium) from the horseshoe crab (Limulus) was dissected out together with its primary afferent
neuron. The receptor could be stimulated with light of varying intensity, I, and the resulting impulse
frequency, F, in the attached neuron, measured. The authors showed that Fechner’s law was obeyed.
There is evidence, therefore, that Fechner’s law, a form of “ the law of sensation” is valid to a degree
using either interpretation of the perceptual variable, F.

Plateau was a Belgian physicist, contemporary with Fechner. He is often given credit for conceiving
the power law of sensation, an alternative to the semilogarithmic law of Fechner (Plateau, 1872). This
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power law is given explicitly by Equation (3.7) below. F. Brentano (1874) attempted to derive this
power law beginning from Weber’ s law. In the twentieth century, this power law of sensation found its
most enthusiastic exponent in the person of S. S. Stevens. While I did state above, admittedly, that each
of these empirical laws remained independent of all other such laws, there have, nonetheless, been
attempts made over the years to link them together. I think that these attempts at deriving the laws are
laudable and I present some of them in these pages. Usually, however, it was found necessary to add
other empirical relations in order to complete the derivation.

The derivation of the Plateau-Brentano-Stevens power law of sensation beginning from Weber’ s
law is attributed to Brentano (Stevens, 1961) and proceeds as follows. Suppose that both the physical
magnitude of the stimulus, I, and the subjective magnitude of the stimulus, F, both obey Weber’ s law.
Then from Equation (3.1),

∆I / I = c1 ,
and

∆F / F = c2 ,

where c1 and c2 are both constants. Then by combining these equations,

∆I / I = (1 / n) ∆F / F ,     (3.5)

where n = c2 / c1 .
Equations (3.1) and (3.5) are, of course, quite different. Again replacing the finite differences by

their corresponding differentials,

dI / I = (1 / n) dF / F .

Assuming the legitimacy of Fechnerian integration, we obtain

ln F = n ln I + ln k ,     (3.6)

where ln k is a constant of integration. This equation can be converted immediately into the form

F = kIn .     (3.7)

This power law of sensation stands in contrast to Fechner’ s semilogarithmic law. It is important to
observe that by taking logarithms to any base of both sides of Equation (3.7) we obtain

logF = n log I + B ,     (3.8)

where B is constant. That is, the Plateau-Brentano-Stevens law might be described as a full logarithmic
law (cf. Fechner’ s semilogarithmic law) because data are expected to array themselves along a straight
line when both F and I are plotted on logarithmic scales. The slope of this straight line is the power
function exponent, n.

Many modalities of sensation have been analyzed by means of the power law (3.7), and
characteristic values of the exponent, n (or rather, characteristic ranges of values for n), have been
tabulated for each modality. For example, for the intensity of sound, n S 0.3 for tones of 1000 Hz. For
a complete list of exponents governing the various modalities the reader is referred to the texts, such as
Coren and Ward (1989). Stevens spent many years demonstrating that when F was measured by the
process of “ magnitude estimation” (a free-wheeling assignment of numbers to match the magnitudes of
human sensations) the power law (3.7) was the law of best fit. To capture the day, Stevens (1970)
re-plotted the Limulus data of Hartline and Graham of 1932 on a log-log graph (that is, he made a full
logarithmic plot rather than a semilogarithmic plot as Hartline and Graham had done), and what
emerged was a straight line as impressive as that obtained by Hartline and Graham. Surely, then, the
power law of sensation was “ the correct” law of sensation and could lay claim to the title of the
psychophysical law!

So, indeed, it may be, but feeling that Fechner might desire a posthumous reply, I played the
inverse game. I selected data measured by Stevens (1969) for the sense of taste of saltiness (sodium
chloride solution). Stevens had showed from a plot of the logarithm of magnitude estimation vs. the
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Figure 3.1 a&b (a) Data of S.S. Stevens (1969). Magnitude estimation of the taste of saltiness
of solutions of sodium chloride of different concentrations. In this log-log plot, the data are seen
to fall nearly on a straight line, except for the two or three most concentrated solutions, whose
magnitude estimates fall below the straight line. This is the type of graph preferred by Stevens.
(b) The same data shown in Figure 3.1a are plotted here in a semilog plot. Note that the data
again fall very nearly on a straight line, except for the two or three least concentrated solutions,
whose magnitude estimates fall above the straight line. This is the type of graph preferred by
Fechner.

logarithm of concentration of solution that these data strongly supported the power law of sensation. In
Figure 3.1 the same data are plotted in a Fechner semilogarithmic graph: magnitude estimation (not its
logarithm) is plotted against the logarithm of concentration of the solution. The result is quite a decent
straight line, thereby affirming Fechner’ s law!

Is it possible that the two forms of the law of sensation given by Equations (3.4) and (3.8),
Fechner’ s law and the Plateau-Brentano-Stevens law, are really mathematically equivalent over some
range of I -values? To this question we shall certainly return. In the interim, the reader interested in
pursuing Fechner vs. Stevens is referred to the very scholarly review of the subject by L. Krueger
(1989), or to Krueger’ s more condensed review (1990).

We have been using the perceptual variable, F, with both the psychophysical and the physiological
interpretations. In this regard, one must take note of the papers of G. Borg and his colleagues (for
example Borg et al., 1967). Taking advantage of the fact that in the human being, sensory nerve fibers
mediating taste from the anterior two-thirds of the surface of the tongue pass backwards toward the
brain in the nerve called the chorda tympani, and that this nerve is surgically accessible as it passes
through the middle ear, Borg et al. carried out a series of experiments. Two days before surgery was to
be performed on the ear, psychophysical experiments were carried out with solutions of citric acid
(sour), sodium chloride (salt) and sucrose (sweet), as well as with various other solutions The method
of magnitude estimation was used and the results were plotted on log-log scales. In this way the power
function exponents were obtained as the slopes of the observed straight lines. During the course of
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surgery performed on the middle ear, the investigators were able to measure the electrical responses in
the exposed fibers of the chorda tympani to the application of these same solutions to the surface of the
tongue. These data, also, were plotted on log-log scales. The power function exponents were found to
be very similar to the corresponding exponents measured in the psychophysical experiments. Therefore,
Borg et al. demonstrated, at least for the sense of taste, the legitimacy of using the same variable, F,
with both the psychophysical and the neurophysiological interpretations.

We cannot, of course, generalize the above conclusions to include all other sensory modalities. For
example, in the case of audition, the loudness of a tone cannot be mapped onto, or associated with the
impulse rate in a single auditory neuron. We also see later that the time scale of neuronal events differs
markedly from the time scale of psychophysical events.

We proceed, in the mathematical development that follows, as if each primary sensory afferent
neuron functions independently and in parallel with all other primary sensory afferents, although we
realize that this approximation cannot be taken too far. And we shall pretend, until Chapter 13, that
subjective magnitudes always parallel the corresponding neural impulse rates as they do in the
experiments of Borg et al. The mathematical work proceeds somewhat more fluently with these
assumptions, but we understand that in the final analysis fuller recognition must be made of the
distinction between psychophysics and neurophysiology. In the coming chapters, we usually treat F as a
psychophysical variable because the experimental data available for testing the validity of our
equations are much more numerous. I do, however, confess my uneasiness with the general process of
assigning numbers, subjectively, to one’ s sensations. I use the results of these experiments involving
subjective magnitudes because, at least at the beginning of our studies, they provide a convenient way
of testing the theory. As the theory develops further, however, we shall work with experiments in which
subjective magnitude plays a lesser role or no role at all.

Finally, let me stress that in the above analysis of the law of sensation we have ignored the variable,
t, the time since onset of the stimulus. Time is a poor relative in papers describing experiments on
subjective magnitudes; it is a variable that is always prominent in the conduct of the experiments, but is
often not reported by the investigators. We treat t as a constant in these experiments. That is, we
assume in all experiments, that the same period of time has elapsed between the onset of the stimulus
and the measurement of F. If this were not the case, the effects of adaptation (see below) would wreak
havoc. We also assume that new stimuli have been applied only after the sensory receptor has had time
to recover completely from previous stimuli; that is, we presume that the sensory receptors are
“ unadapted.” Please note, therefore, that the law of sensation is obtained from the three cardinal
variables, F, I and t, by holding t constant and relating F to I.

We have also assumed tacitly, in the above discussion, that a unique algebraic form of the
psychophysical law exists and governs many of the modalities of sensation. There are those who
maintain that a unique psychophysical law is chimerical; that none exists. For example, Weiss (1981)
argues, quite properly, that the algebraic form of any psychophysical law must depend on the manner in
which the physical intensities, I, are measured. If we decided to measure the concentrations of odorants
using the pC scale (the negative logarithm of the concentration of the odorant), then the psychophysical
law, both the Fechner and the Stevens forms, would be patently wrong. Weiss is quite right. However,
we shall show later on that there is a condition with which all measures of stimulus intensity must
comply if they are to give rise to a universal psychophysical law: namely the logarithm of stimulus
variance must be a linear function of the logarithm of stimulus magnitude: that is, σ2 ∝ In. This rule
will be complied with (approximately) when concentrations of odorants or solutions are measured on
linear scales, but not if they are measured on logarithmic or other scales. My reasons for affirming its
existence will become clearer as we proceed. We shall return to Weiss’ objection in Chapter 10.

ADAPTATION

The term adaptation seems to mean different things to different people. I use the term in two
senses, the first of which is best introduced by example. Suppose you walk into a room dominated by
the pungent odor of fresh paint, or perhaps into a kitchen enveloped by the heavy odor of cabbage
cooking. In either case the odor is very prominent when you first enter the room, but weakens with
time, and after a few moments may become virtually undetectable. We say that you have adapted to the
olfactory stimulus. The phenomenon is often quite dramatic. When you first experienced the adaptation
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effect as a child did you not think that the stimulus itself had vanished? Certainly some adults I have
spoken with still believe this to be true. “ After a few minutes, the paint doesn’ t smell any more,” a
house-painter once told me. However, the stimulus is certainly still present; only our sensation of it has
diminished. This type of adaptation might be called psychophysical adaptation.

It is important to observe that not all modalities of sensation seem to adapt, or if they do adapt, do
so incompletely. The rate of adaptation may also vary considerably. Olfactory receptors, of course, do
adapt and often adapt completely or to extinction. That is, odor simply disappears after a short period.
Taste receptors adapt, but not necessarily to extinction; that is, the sweet taste from the sugar solution
in your mouth may become less intense, but will not disappear completely. Temperature receptors
behave in much the same fashion. Mechanoreceptors are classified by the speed with which they adapt,
and their speed of adaptation specializes them as velocity receptors, vibration receptors, etc. (Schmidt
1978). Pain receptors do adapt to some extent. As you can imagine, a lot of work has been done on this
subject. However, often pain persists and the sufferer requires chemical analgesia. Light receptors may
not seem to adapt under normal circumstances. For example, the page you are reading is not fading.
However, when you step from a dark room into bright sunlight, you may be temporarily blinded. After
a few moments, the eye does light adapt and the world seems less bright (in a very literal sense!). Of
course, we do not stay adapted forever; after the stimulus has been removed for a period of time, we
“ de-adapt” so that, for example, we may re-enjoy the scent of hydrogen sulphide gas.

The second meaning which I import to the term adaptation is increase in threshold. A threshold for
sensation is the stimulus of least intensity which one can detect. Thresholds tend to increase as
adaptation proceeds, and to decrease as de-adaptation occurs. For example, if you wish to detect visual
stimuli of very low intensity, flashes of light consisting of only a few photons, a good strategy is to
remain in a very dark room for about 30 minutes. The eye de-adapts (usually referred to as dark
adaptation) so that the retinal photodetectors called rods can decrease their threshold of detection. The
change in light intensity threshold (luminance threshold), ∆I, has been related to the adapting
luminance, I, by Weber’ s law (Dowling, 1987):

∆I / I = constant.     (3.1)

So the two meanings to be associated with adaptation are psychophysical and threshold shift. By
and large, I shall be dealing with psychophysical adaptation. I shall regard adaptation as a phenomenon
(again) involving two of the three cardinal variables. In the case of psychophysical adaptation,
intensity, I, is held constant while the perceptual variable, F, changes with the time since stimulus
onset, t. By and large, the psychophysical adaptation curve has the shape illustrated in Figure 3.2.

We recall that the law of sensation was regarded as the mathematical relationship between F and I
with t held constant. Now, taking the effects of adaptation into account, we see that for many
modalities, F will be be smaller when t is larger. Therefore, in a full logarithmic plot (power law of
sensation) of F vs. I, the straight line obtained will shift downward on the graph when t is greater. For

Figure 3.2 Psychophysical adaptation curve (schematic). A perceptual variable (e.g.
magnitude estimate) declines monotonically with the time since stimulus onset. Stimulus
intensity is held constant.
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Figure 3.3 After Schmidt, 1978. Neural response of a pressure receptor on a log-log plot. Each
straight line represents the “ law of sensation” for a receptor at a specified time of adaptation (1 s,
2.5 s, ...). Clearly, the greater the adaptation time, the greater the downward shift of the straight
line. We shall understand later why the lines are nearly parallel.

example, the neural response of a pressure receptor (impulses per second) to a constant-force stimulus
(newtons) results in a series of nearly parallel straight lines (Schmidt, 1978, page 88). This effect is
illustrated in Figure 3.3. The reason why the straight lines are parallel will emerge as we conduct our
theoretical analysis.

The subject of auditory adaptation requires some further remarks. While there seems to be
near-universal agreement that psychophysical adaptation does occur (for example, apparently pulsating
tones are more easily detected than are steady tones), the extent of this adaptation is not completely
clear (to me). However, there are two representations of auditory adaptation that are quite clear. The
first is very rapid neurophysiological adaptation in the guinea pig auditory nerve reported by Yates et
al. (1985) for the guinea pig auditory nerve. These investigators recorded the response of guinea pig
ganglion cells to 100 ms tone bursts, in the form of peristimulus and poststimulus time histograms. The
result was a rapid decline in the frequency of action potentials during the first 50 ms following the start
of the tone stimulus. There is also a classical paper by Galambos and Davis (1943) purporting to show
pronounced adaptation in single auditory nerve fibers of the cat. However, in a later note (1948), the
authors queried their own work suggesting that the electrical effects measured may have issued from
other neurons.

Figure 3.4 SDLB (simultaneous dichotic loudness balance) data of Small and Minifie (1961,
Figure 3c, p. 1030). One ear, stimulated by means of a steady tone, adapts with respect to the
other ear, which is stimulated only intermittently.
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A second very clear manifestation of auditory adaptation, this time in the human being, was
discovered by HoodQ in 1950. Hood’ s method involves the comparing of loudness in one ear, which is
being adapted to a tone, with the opposite ear, which is receiving very little sound. Specifically, this is
how the effect is measured. A tone of constant intensity is presented to the adapting ear. It is this ear
which is being tested for a decrease in loudness sensation. An intermittent tone is presented to the
opposite or test ear. The subject must adjust the intensity of the tone in the test ear to balance the
loudness between both ears. It is found that the adapting ear adapts with respect to the test ear. Note
that in this clever measure of adaptation, the investigator does not record the subjective magnitude, or
loudness of the tone, but rather records the objective or physical magnitude of the adaptation process.
That is, he or she records the decrease in intensity of sound in decibels2 required to produce a balance
between ears. A graph of dB adaptation vs. time, using the data of Small and Minifie (1961) is given in
Figure 3.4. It may be seen that about 30 dB of adaptation are recorded when one ear is tested with
respect to the other. This process is called the technique of simultaneous dichotic loudness balance, or
SDLB. Note that it, too, relates two of the three cardinal variables: I, the physical intensity of the tone
(giving rise to dB of adaptation) and t, the time since onset of the tone. We shall study the adaptation
process theoretically in Chapter 11.

Figure 3.5 a&b (a) Data of Lemberger (1908) for differential threshold of taste of sucrose.
Weber fraction plotted against concentration of tasted solution. Note the features of the curve:
fall in Weber fraction for low intensities to a plateau region that extends from about 2% to 16%
solution, followed by a terminal rise as the physiological maximum is approached. Lemberger
actually provided three additional data points showing that for very high concentrations Weber
fractions become very great (discrimination is poor as maximum concentration is approached).
(b) Same data as in (a). Inverse Weber fraction is plotted against ln (concentration). The number
of rectangles beneath the curve between concentrations a and b is equal to the number of jnd’ s
between a and b.
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THE WEBER FRACTION

We have already encountered Weber’ s fraction, ∆I / I, which is usually measured as the ratio of the
smallest detectable difference between two stimuli, to the lower of the two stimuli. ∆I has also been
called the differential threshold or limen for intensity discrimination. We saw in the formulation of
Equation (3.1) that Weber and Fechner believed that ∆I / I was constant over the physiological range of
perceptible I. However, later work by other investigators showed this not to be the case. For most, if not
all, modalities of sensation the Weber fraction is maximum for the lowest intensities and falls
progressively as I increases. For the middle range of intensities, ∆I / I is nearly constant, approximating
Weber’ s law (3.1). For high values of I, approaching the maximum (non-painful) level of stimulation,
∆I / I again rises for many modalities. This terminal rise in the Weber fraction is certainly found for the
sense of taste (Lemberger, 1908; see Figure 3.5a), and the sense of vision (König and Brodhun, as
reported by Nutting, 1907, Table 1; and Hecht, 1934, Figure 3.6), and possibly also for the sensation of
temperature (Pütter, 1922). High-intensity rise in the Weber fraction may also be a feature of auditory
intensity discrimination (McConville et al. 1991), although this is far from certain.

Again, although most authors do not report the duration of stimuli used in measurements of
intensity discrimination, it will be assumed that the duration is kept constant for all stimuli. Thus, the
graph of ∆I / I vs. I is obtained by holding t, one of the three cardinal variables, constant, and plotting
the relationship between the other two variables. The reader may object that only one of the remaining
two variables is evident, namely I; the other variable, F, is not present. Actually, the variable, F, is
present but is just not visible. Recall that ∆I refers to the change in intensity, I, that corresponds to one
just noticeable difference in sensation. This jnd in sensation can be written in the form ∆F. Therefore,
the expression for Weber fraction, if written out more fully would be

∆I
∆F / I ,

the change in stimulus intensity per jnd divided by the lower of the two intensities.
The experimental process whereby the Weber fraction is measured is of interest to us. There is not

one single definitive value of ∆I for which a distinction between signal intensities can be made. Rather,
∆I must be inferred statistically from the experimental data. The experimental protocol might be as
follows. The subject might be presented with two stimulus signals sequentially, and required to indicate
which of the two was more intense. The difference between intensities can be designated δI. This
procedure might be repeated many times with the same two stimuli, sometimes with the more-intense
stimulus presented first and sometimes with the less-intense first. The proportion of correct
discriminations, C, can then be computed. But C is a function of the difference in intensities, δI. That
is, C is C(δI ). In order to define C(δI ) over a range of values of δI, the experiment can be repeated with

Figure3.6 Data of König for differential threshold of light intensities. Weber fraction is plotted
against intensity of light. Manifests the same features as the corresponding curve for taste
(Figure 3.5a).
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Figure 3.7 Statistical measurement of the differential threshold, ∆I Proportion of correct
discriminations, C(δI ), plotted against intensity difference, δI. Define ∆I as the value of δI for
which C(δI ) equals 0.75.

the lower of the two stimulus signals at the same value as before, but with δI changed. C(δI ) can again
be computed. This process is repeated until the function C(δI ) has been defined for a range of values of
δI. The graph of C vs. δI often obtained is sigmoid in shape, as shown in Figure 3.7.

The value of δI to be taken as ∆I, “ the” limen for intensity discrimination, is largely arbitrary, but
∆I is commonly taken as the value of δI for which C is equal to 0.75; that is, ∆I is the stimulus
increment that will permit a correct discrimination between intensities 75% of the time. ∆I is, of course,
a function of I, so it must be determined at all requisite stimulus intensity levels. As you can see, there
is a lot of experimental work involved in the determination of one Weber fraction curve with I ranging
from threshold to maximum physiological intensity. A method for measuring the difference limen that
is, perhaps, more classical is described by Coren and Ward (1989, p33 - 35).

The purpose of including the above experimental protocol in this book is primarily to demonstrate
the arbitrariness of the function ∆I(I ) (∆I as a function of I ). If the criterion for discrimination is
changed from 0.75 to 0.5, for example, the function ∆I(I ) will change accordingly. Therefore – and this
is a feature we shall draw upon later – ∆I, the limen for intensity discrimination, is not a unique
quantity. If ∆I is to appear as a variable in a theoretically derived equation, its lack of uniqueness must
be compensated for. We shall have to deal with this problem when it arises.

Let us turn our attention now back to the graph of ∆I vs. I, where I extends over the full range of
physiological values, from threshold to the verge of pain. The extent of the full physiological range will
vary considerably depending on the modality of sensation. For example, for the sense of taste,
Imax / Imin S 102, while for the sense of hearing, Imax / Imin S 1011 (or greater). The value of ∆I / I may
approach (or exceed?) unity for values of I close to threshold, and descend to values nominally in the
range 0.1 — 0.5 in the middle range of I. If ∆I / I tends toward a plateau or constant value in this middle
region, the constant will be referred to as Weber’ s constant, with reference to Equation (3.1).

It is rare, but always noteworthy, when people succeed in deriving a sensory law from another,
more basic law, without the addition of major assumptions: the apparent complexity of the universe is
demonstrably diminished. In this regard, it is worthwhile to see how Ekman (1959) was able to derive
an expression for the Weber fraction from a variant of the power law of sensation. Ekman added one
additional constant, a, to the power law, Equation (3.7), to obtain the equation

F = k(I + a)n .     (3.9)

It transpires that the constant a must be greater than zero (see Equation (3.10) below), which makes
the interpretation of Equation (3.9) somewhat difficult. If we differentiate F with respect to I, we find

dF
dI

= nF
I + a .
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Introducing an approximation using finite differences and solving for the Weber fraction,

∆I / I = a∆F / nF
I + ∆F

nF .

At this point, Ekman found it necessary to introduce an additional equation,

∆F = cF ,

which we have seen before in the derivation of the power law of sensation. Combining the last two
equations we obtain

∆I / I = ac / n
I + c / n ,     (3.10)

or simply

∆I / I = A / I + B ,     (3.10a)

where A and B are constants greater than zero. More of the history of this equation is given in Chapter
12.

Equation (3.10) does, indeed, describe the shape of the Weber fraction, showing that it has large
values for small values of the intensity, I, and that it descends toward a constant plateau value of B for
larger values of I. Apparently, Fechner himself proposed a modification of Equation (3.1) to Equation
(3.10). Notice that Equation (3.10) does not allow a high-intensity rise in the Weber fraction.

From the graph of ∆I / I vs. I, can we calculate the total number of jnd’ s, N, which, when stacked
one on the other, would extend from threshold to maximum physiological intensity? In principle, N can
be measured directly (see Lemberger, 1908) by making N measurements; however, in practice, this is
often impossible and one must calculate N from fewer than N measurements. N may be calculated from
the equation,

N = ∫Ithresh

Imax dI
∆I .     (3.11)

The idea is that dI / ∆I is the number of jnd’ s that “ fit into” a small intensity range, dI. If we then
integrate from the value of intensity at threshold, Ithresh, to the maximum physiological value of I, Imax,
we shall obtain N, the total number of jnd’ s.

Since ∆I has been measured for a number of intensities, I, we can calculate 1 / ∆I for these
intensities. Equation (3.11) states that N is equal to the area of the curve formed by plotting 1 / ∆I
against I for the full range of I. One can then plot the graph and find the area by numerical integration
using, for example, the trapezoidal rule or Simpson’ s rule (see, for example, Press et al., 1986). If I has
a large range of values, such as in the senses of vision and hearing, Equation (3.11) may be difficult to
employ, and I recommend a minor modification. Since

d(ln I ) = dI / I ,

dI / ∆I = d(ln I )
∆I / I

and Equation (3.11) may be written in the form

N = ∫ln Ithresh

ln Imax d(ln I )
∆I / I

.     (3.12)

That is, N is equal to the area of the curve obtained by plotting the reciprocal of the Weber fraction,
(∆I / I )−1, against the natural logarithm of I. Such a graph has been made from Lemberger’ s data in
Figure 3.5b, and the reader can easily estimate the area by counting the number of large squares
beneath the curve (about 21 jnd’ s).

If a plateau-region exists in the Weber fraction curve, say between the intensity levels Ilow and Ihigh,
then Equation (3.12) can be used to calculate, in a very simple way, the total number of jnd’ s, Nplateau,
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between these limits. Since ∆I / I = Weber’ s constant in this plateau-region, this quantity may be
removed from under the integral sign:

Nplateau = 1
Weber constant ∫ln Ilow

ln Ihigh d(ln I )     (3.13)

Nplateau = 1
Weber constant

ln(Ihigh / Ilow) ,

or

Nplateau = ln 10
Weber constant

log10(Ihigh / Ilow) .     (3.14)

For example, referring to Figure 3.5b, if we approximate the plateau-region in Lemberger’ s data as
extending between sucrose concentrations of 1 to 16, then, since the Weber constant S 0.14,

Nplateau = ln(16 / 1)
0.14

= 19.8 jnd’ s.

One final word on Weber fractions. When dealing with the sense of hearing, the variable, I, is
sometimes used to represent mean sound pressure, p, and sometimes to represent mean sound intensity
which varies as p2. Therefore,

∆I / I = ∆p2 / p2 S 2p ∆p / p2 = 2∆p / p .     (3.15)

Notice also the power law for sound intensity:

F = kIn → kp2n ,     (3.16)

so that the power function exponent for sound pressure is twice that for sound intensity.

THE ANALOGS

Let us digress briefly from our review of sensory experiment to consider again the ideal gas analog
introduced in Chapter 1. Recall the three state variables, P, V and T and the three equations involving
these variables derived from the ideal gas law, Equation (1.1):

P ∝ T Charles’ law

P ∝ 1 / V Boyle’ s law

∆T / T ∝ 1 / T .

    (1.3)

    (1.4)

To obtain Equation (1.2) we held V constant; to obtain Equation (1.3) we held T constant; and to
obtain Equation (1.4) we again held V constant and considered the result when ∆P was also constant.

Compare the ideal gas equations with the psychophysical experiments that we have been
discussing. Our three variables are now t (time since stimulus onset), I (intensity of stimulus) and F
(perceptual variable). To obtain the law of sensation, we held t constant and obtained a graph where F
increases monotonically with I (Figure 3.1; cf. Equation (1.2)). To study adaptation phenomena we held
I constant and obtained a graph where F decreased monotonically with t (Figure 3.2; cf. Equation
(1.3)). To study difference discrimination we again held t constant and found for constant ∆F that ∆I / I
varied as a function of I (Figure 3.5; cf. Equation (1.4)).

V T P

¸ ¸ ¸
t I F
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The primary reason for introducing the PVT analogs is to aid (psychophysicists and biologists
primarily) in regarding the three sensory experiments not as independent entities but rather as different
experiments performed with the same three variables: I, t and F. Once this conceptual leap has been
made, one has less difficulty understanding how a single equation, analogous to PV = RT, can serve to
unite the three types of experiment. And unification is basically what this book is about.

Just as PV = RT can be written as P = P(T,V ), the hypothetical unifying sensory equation can be
written formally as

F = F(I, t ) ,     (3.17)

where the explicit form of the function, F(I, t), has yet to be developed. When t is held constant (that is,
t = t U = constant), then

F = F(I, t U)     (3.18)

will describe the law of sensation (presumably in both the full logarithmic and the semilogarithmic
forms). When I is held constant (that is, I = IU = constant), then

F = F(IU, t )     (3.19)

will describe adaptation phenomena. When both t and ∆F are held constant (that is, t = t U and
∆F = ∆F U), then

∆I / I = g(t U, ∆F U; I )     (3.20)

will describe the Weber fraction; g is some function yet to be defined. In the coming chapters we work
toward the derivation of the critical function F(I, t). We can, actually, be a little more explicit even at
the present time. Since we have introduced the relationship

F = kH ,     (2.6)

k constant, in Chapter 2, we know, therefore, that the critical function, F, can be expressed in the form

F(I, t ) = k H(I, t ) .     (3.21)

Our problem is, then, to derive the algebraic form of the functions H(I, t ).

THRESHOLD EFFECTS: THE LAWS OF BLONDEL AND REY, OF HUGHES, OF
BLOCH AND CHARPENTIER

We move forward in time, now, from the mid-nineteenth century (Weber and Fechner) to the late
nineteenth and early twentieth century. In 1885, Bloch and Charpentier stated their law governing the
minimum quantity of light energy required for detection by an observer. In separate papers published in
Comptes Rendus de la Société de Biologie, they argued that Ithresh, the minimum perceptible light
intensity, is a function of the duration, t, of the light signal. In fact, for values of t less than about 0.1
second

Ithresh � t = constant.     (3.22)

That is, the simple arithmetic product of Ithresh with t is constant. Since Ithresh can be measured in
units of power (e.g. joules per second), the Bloch-Charpentier constant represents a minimum energy
for signal detection. However, when t exceeds some upper bound, the law is violated. There is a
minimum value for Ithresh below which no light stimulus is perceptible.3 Let us call this value I∞. Then

Ithresh ≥ I∞ .     (3.23)
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The same law seems to hold for the sense of hearing, although I am not quite sure who first
observed it. A graph published recently in the Handbook of Perception and Human Performance
(Scharf and Buus, 1986) contains the collective data of Garner (1947), Feldtkeller and Oetinger (1956),
and Zwislocki and Pirodda (1965). This graph shows that the threshold shift (in decibels)2 of 1000 Hz
tone bursts is a linearly decreasing function of the logarithm of time, for t less than 0.3 seconds. That is,

10 log10(Ithresh / I∞) = −k log10 t + constant, k > 0 .

If one measures the value of k from the graph, it is found that k is very nearly equal to 10. That is,
representing the constant on the right-hand side of the above equation by 10 log10 a, we obtain to a
good approximation

Ithresh / I∞ = a / t

or
Ithresh � t = aI∞ ,     (3.24)

Which is, again, the Bloch-Charpentier law. a can be estimated from the data to be about 0.16
second.

Moving forward a little in time to 1912, Blondel and Rey addressed the issue of the mathematical
relationship between Ithresh and t for larger values of t ; that is, for values of t greater than that for which
the Bloch-Charpentier law was valid. The empirical relationship they discovered, which has been
confirmed by many other studies, is the following:

Ithresh

I∞
= 1 + a

t .     (3.25)

The constant a, usually now known as the Blondel-Rey constant, has a value of about 0.21 seconds.
As Blondel and Rey pointed out, when t, the duration of the stimulus, is small, the second term on the
right-hand side of Equation (3.25) becomes much greater than one, and consequently

Ithresh

I∞
S α

t ,

which retrieves the Bloch-Charpentier law. Equation (3.25) is, therefore, a more general empirical
equation embracing the earlier law.

I have found the proceedings of a symposium on flashing lights chaired by J. G. Holmes (1971) to
be a valuable source of information on this subject.

Not to be outdone by the vision researchers, J. W. Hughes (1946) published his research on the
auditory threshold of brief tones, and showed that the Blondel-Rey equation was valid also for tones of
various frequencies between 250 and 4000 Hz. Hughes drew the readers’ attention to the similarity
between Equation (3.25) and the equation giving the threshold electrical current which passes through a
nerve cell membrane, as a function of the time needed to achieve threshold or firing of the neuron (the
“ chronaxie equation of Lapicque” ). Hughes does not seem to give sufficient data in his paper for the
evaluation of the constant, a, for audition. However, since again the equation goes over into the
Bloch-Charpentier law for brief t, one might estimate a to have the value of about 0.16 second (see
Equation 3.24).

I am not aware of Hughes’ work having been replicated, but Plomp and Bouman (1959) have
extended Hughes’ studies.

SIMPLE REACTION TIME

The subject’ s finger is poised above a button that will register the exact time it is pressed. On her
ears are headphones. The instant she hears a tone through the headphones she will press the button. The
time between the beginning of the tone and the pressing of the button is called the simple reaction time.
In general (Coren and Ward, 1989), the reaction time is the time between the onset of a stimulus
(auditory, visual, gustatory, ...) and the subject’ s overt response.
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Figure 3.8 Data of Chocholle (1940). Reaction time plotted against sound pressure. The
smooth curve is discussed later in the text.

A feature that makes the simple reaction time particularly interesting is its peculiar relationship to
the intensity of the stimulus: The more intense the stimulus, the shorter the reaction time. This
relationship between reaction time, tr, and stimulus intensity is shown in Figure 3.8 (Chocholle, 1940).
There is, of course, a threshold intensity below which the stimulus cannot be detected.

There are various physiological events that transpire during the reaction time. A neuronal signal
must travel from the sensory receptor(s) to the brain passing one or more synapses, a motor signal must
proceed down to muscle, and muscle must contract to actuate the finger. The study of these
components dates back at least to the time of Helmholtz. We shall return later to muse, briefly, over
this sequence of events.

We see, though, that on the whole, the relation between reaction time and stimulus intensity is,
again, a relationship between the two variables, I, and t. However, t = tr is not necessarily the duration
of the stimulus (the sense in which t has been used before), but rather is the time taken by the subject to
react to the stimulus. This will lead us later into somewhat darker waters.

Simple reaction time, too, has its associated empirical equations, the best-known of which are
probably those of Piéron. Although Piéron formulated several empirical relations between tr and I, the
one with which we shall be most concerned is the following (Piéron, 1914, 1952):

tr = tr min + CI−n     (3.26)

where C and n are constants that are greater than zero, and tr min is the smallest possible value of tr,
obtained for the maximum physiological value of I. It can be seen that Equation (3.26) describes the
type of curve depicted in Figure 3.8. Moreover, an extraordinary observation has been made,
particularly for simple reaction times to auditory and visual stimuli: the value of the exponent, n, in
Equation (3.26) is close to, but usually less than, value of n found in the power law of sensation,

F = kIn .     (3.7)

Why in the world should this be so? Is it pure coincidence?
We demonstrate later, using the unifying equation (3.21) in its explicit form, that both Equation

(3.7) and Equation (3.26) can be derived from the same “ parent” equation, and that the exponent, n, can
be expected to be similar in magnitude in both equations.

However, despite all that we shall attempt to do, “ simple” reaction time will retain some secrets
that we are not able to fathom.

Just a general remark here before proceeding. It should be recognized that all of the preceding
empirical equations represent means or averages taken on many, many trials involving many individual
subjects. There are large inter-subject differences and no attempt has been made, in these pages, to
tabulate them. Neither shall we be able, in the theoretical exposition that follows, to make allowance
for these differences. Rather, we are content just to be able to derive the equations for the means.
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Figure 3.9 Schematic of graph by Teghtsoonian using data assembled by Poulton. Power
function exponent plotted against log10 stimulus range = 1.53. The data array themselves along a
rectangular hyperbola.

THE POULTON-TEGHTSOONIAN LAW

In a well-known paper published in 1971, R. Teghtsoonian, working with data assembled by E. C.
Poulton (1967), made an extraordinary observation. He observed a relationship between the power
function exponents, n (Equation 3.7), for different sensory modalities and the logarithm of the
physiological range spanned by these modalities. For example, audition has the exponent value of about
0.3 (sound intensity at 1000 Hz.), and auditory intensity spans a range of about 109, so that log10(range)
S 9. The sense of taste gives rise to an exponent much closer to 1.0, while it spans only about 2 decades
of concentrations (intensities), so that log10(range) S 2. Higher exponents are associated with a smaller
range and vice versa.4 In fact, when Teghtsoonian plotted a graph of n vs. log(range) (shown
schematically in Figure 3.9), he found that the data lay on a rectangular hyperbola whose equation was

(n)(log10range) = 1.53 .     (3.27)

We shall see, in our explorations, that we can derive Equation (3.27) in the course of our theoretical
studies of the Weber fraction.

Figure 3.10 Schematic demonstration of the Ferry-Porter law. Critical fusion frequency for a
flickering light source is related linearly to the logarithm of the intensity of the light, to a
saturable limit. The curve drawn is characteristic of the type obtained when the observed light
falls on the fovea.
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A VERY APPROXIMATE LAW OF OLFACTORY THRESHOLDS

The final empirical equation we shall discuss here was discovered by Laffort et al. (1974), and
elaborated by Wright (1982). It is a law that holds only very approximately, but may be worth
mentioning here anyway.

Let I∞ be the lowest detectable concentration of an odorant. Now define

pol = − log10I∞ .     (3.28)

Laffort et al. discovered a hyperbolic relationship between n and pol quite similar to Equation
(3.27):

(n)(pol) = constant.     (3.29)

This relationship has not always been confirmed by other investigators.

THE FERRY-PORTER LAW AND TALBOT’ S LAW

The final empirical law we shall discuss here was formulated by Ferry (1882) and Porter (1902) and
deals with flashing lights. It refers to an experiment in which a subject is observing a flashing light, or a
rotating disk with black and white sectors. The frequency of the flashing light is held constant. Let us
suppose that the on-time of the light is equal to the off-time. The frequency of flashing is slowly
increased. At a certain frequency the subject reports that the light no longer appears intermittent but
rather appears to be steady. The frequency of flashing may then be slowly decreased until the light
again appears intermittent. In this way, a critical fusion frequency or critical flicker frequency (CFF)
for the light of a given wavelength for a given intensity is established. The experiment may then be
repeated for a number of different intensities of light, keeping the wavelength constant.

It is found that the critical fusion frequency increases with increasing intensity of the light, up to a
certain maximum intensity. The shape of the graph of CFF vs. I is influenced by the regions of the
retina on which the image of the light falls, and also shows the effects of the two types of light
receptors, rods and cones, that are found in the human retina. However, CFF, over a wide range of
intensities, is found to increase linearly with the logarithm of the intensity (Figure 3.10). That is,

CFF = a log I + b, a, b constant.     (3.30)

This semilogarithmic law is called the Ferry-Porter law.
One should notice here again that, as with so many of the preceding empirical laws of sensation, we

deal with a relationship between the intensity of the stimulus, and the duration of time over which the
stimulus is applied (the on-time of the light in each cycle).

At frequencies that exceed the critical fusion frequency, the effective luminance (intensity) of a
flashing light is independent of frequency and is equal to the average over time of the real luminance.
This phenomenon is called Talbot’ s law.

With this law we conclude our tour of the empirical laws of sensation. We have not, by any means,
exhausted the stock of such laws; many, many more of them exist. However, all eight laws are dealt
with in a theoretical sense in the course of this book.

NOTES
1. A word to the wise... What Weber actually wrote in Latin is “ in observando discrimine rerum

inter se comparatarum, non differentiam rerum, sed rationem differentiae ad magnitudinem rerum inter
se comparatarum, percipimus” (cited by Drever, 1952).

2. Decibels (dB):
Let x and x0 be any two numbers. We can use x0 as a reference with respect to which x is reported.

For example, we could report all values of x as multiples of x0:

q1 = x1 / x0, q2 = x2 / x0 . . .
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The decibel system reports x as a logarithm of the q’ s. For example,

dB1 = 10 log10q1 = 10 log10x1 / x0 ;

dB2 = 10 log10q2 = 10 log10x2 / x0 ; ...

In general
dB = 10 log10 x / x0 .

Why do we use the dB-system? Why not just report x as x? Sometimes the values of x we are
interested in become very large or very small; for example x1 = 10−7, or x2 = 108. It is then convenient
to choose a handy value of x0 (say x0 = 1) and use the dB-system. Then

x1 = 10 log1010−7 = −70 dB

x2 = 10 log10108 = 80 dB.

Notice that you can always use the dB-value to solve backwards to obtain the original x-value. For
example, what x-value corresponds to y dB?

y = 10 log10x

log10x = y / 10

x = 10y/10 .

3. Modern signal detection theory addresses the problem of threshold detection probabilistically,
but we shall not introduce SDT in this book.

4. The values given for “ range” are low. There is an arbitrary element involved in specifying the
upper limit of the range.

Q (2003 ed. note) I had not realized, at the time of writing, that von Bekesy had suggested
essentially the same test many years before Hood. The reader is referred to Experiments in Hearing by
Georg von Bekesy, published by the Acoustical Society of America, through the American Institute of
Physics, by arrangement with McGraw-Hill Book Company, which published the book originally in
1960. Bekesy’ s experiment appears on page 357 of the book. Moreover, Bekesy was prescient in his
use of the log-scale for time, which is suggested now by the entropy theory (Equation (11.45)).
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