
CHAPTER 4

INFORMATION OF EVENTS WITH
DISCRETE OUTCOMES: METHODS
OF COMMUNICATION THEORY
AND PSYCHOLOGY

We were introduced to the concept of information in Chapter 2, where the distinction was made
(note 4) between discrete and continuous outcomes to an event. An event with only discrete outcomes
is one such as the toss of a coin, which can land only heads or tails. An event with continuous outcomes
is one such as the time of a response, which can, in principle, take on an infinity of values. In this
chapter we consider only events of the former type, and we analyze, using two parallel and equivalent
methods, how information is transferred during these events. The reader is reminded that the word
information, if it is not qualified by an adjective, will always refer to that quantity which is measured
by information theoretical entropy (sometimes called communications entropy). In Chapter 2 we
glimpsed the way in which the information or entropy concept was to be employed in the analysis of
sensory events: a natural law will be formulated giving perceptual response (such as the rate of action
potential propagation in a sensory neuron) as a mathematical function of the entropy of a stimulus. If
information, and hence entropy, were only an arbitrary creation of communications engineers,
fabricated as a convenient means of measuring the efficiency of transmitting a message in a telephone
cable, it would be surprising indeed that nature would use the same measure in sensory neurons.
Therefore, we shall proceed in Chapter 6 to examine how the information concept, masquerading in
different garb, was introduced into physics by Ludwig Boltzmann more than half a century before
Shannon’s paper on the theory of communication, and how information (or, equivalently, informational
entropy) was woven into the fabric of physical law. As the story unfolds, we shall see that the entrance
of informational entropy as a primary variable of neurophysiology seems to be an extension of its role
as a primary variable in physics.

PICKING UP THE THREAD

We suppose that some event may happen in N discrete ways. For example, a election may result in
only 1 winner from among 12 candidates who are running. We may say, therefore, that the election
event has N = 12 possible discrete outcomes. The uncertainty that prevails before the election results
are known is measured using the entropy, H, that was defined by Equation (2.1):

H = −∑
i=1

N

pi logpi     (4.1)

where pi is the probability of the ith outcome. That is, H is a weighted sum of the logarithms of the a
priori probabilities. Of course, the probabilities must sum to unity; that is,

∑
i=1

N

pi = 1 .     (4.2)
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Therefore, the election uncertainty is given by

H = −∑
i=1

12

pi logpi ,

where p1 is the assumed probability that candidate 1 will be elected, etc. We note that, in contrast to the
earlier example of tossing a coin or rolling a die where the a priori probabilities were possibly
determined geometrically, the probabilities in this example are established by various subjective means
(perhaps augmented by the results of pre-election polls). When the results of the election become
known, the uncertainty vanishes, and information about the election takes its place. The information
about which candidate won the election is equal to the preexisting uncertainty, so that

, = H .     (4.3)

We recall that the base of the logarithms used is arbitrary; and also that when all the probabilities
are equal (say equal to p), then

H = logN ,     (4.4)
where

N = 1 / p .     (4.5)

We might ask the very natural question: Given some value for the number of possible outcomes, N,
which values for pi will render H maximum? For example, suppose we deal with an event with two
possible outcomes whose probabilities are p1 and p2. Then, as a consequence of Equation (4.2),
p2 = 1 − p1. What value of p1 will then produce a maximum value for H? From Equation (4.1),

H = −p1 logp1 − (1 − p1) log(1 − p1) .     (4.6)

We shall take limp1→0 p1 logp1 = 0. Then we may see that for p1 = 0, H = 0, and for p1 = 1,
H = 0. This result is quite reasonable since, when p1 = 0, p2 = 1, the second outcome is a certainty
and, therefore, uncertainty, H, vanishes. H is similarly equal to zero for p1 = 1, when the first outcome

Figure 4.1 Entropy of an event with two possible outcomes, as a function of the probability,
p1, of one of these outcomes. p2 = 1 − p1. Note that entropy is maximum for p1 = p2 = 1

2 .
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4. Information of Events with Discrete Outcomes 36

is a certainty. The mathematical function H( p1) must, therefore, be equal to zero for the two extreme
values of p1. Moreover, because of the symmetry in the variables p1 and p2, the function must be
symmetrical about the line p1 = 1

2 . The complete graph of H vs. p1 is shown in Figure 4.1, where H is
seen to be maximum for p1 = p2 = 1

2 .
Consider now the general case of an event with N possible outcomes. Then H is given by Equation

(4.1) subject to the constraint expressed by Equation (4.2). In order to extremize H, that is, to find its
relative maxima and minima, we introduce a Lagrangian multiplier, λ, to produce the expression

G = −∑
i=1

N

pi ln pi + λ ∑
i=1

N

pi − 1 .     (4.7)

That is, we set up the expression

G = entropy + Lagrangian multiplier × constraint.

The values of pi for which H is an extremum subject to the normalization constraint is found by
differentiating G partially with respect to each of the pi, and equating the derivatives to zero:

∂
∂pk

−∑
i=1

N

pi logpi + λ ∑
i=1

N

pi − 1 = 0

− 1 − ln pk + λ = 0

ln pk = λ − 1

pk = eλ−1 , for all pk .     (4.8)

That is, all pi are equal and must be equal to 1 / N for an extremum.
In principle, we are not yet finished, since we must show that the extremum for H when pi = 1/N is,

in fact, a maximum. For the completion of the proof, the reader is referred to Raisbeck (1963).
So the entropy, H, is maximum when the outcomes of the event are equally probable, as we saw in

the example in Figure 4.1. In other words, we are most uncertain when an event is equally likely to
occur in various possible ways, and we derive the greatest possible amount of information from

Figure 4.2 Entropy of an event with three possible outcomes, as a function of the probabilities
p1 and p2 of these outcomes. Entropy, H, is given by H = −∑ i=1

3 p i logp i. Since
p3 = 1 − p1 − p2, therefore

H = −p1 logp1 − p2 logp2 − (1 − p1 − p2) log(1 − p1 − p2) .

The graph shows H as a function of p1 and p2. However, appearances can be deceiving. In the
graph shown, the origin is actually remote from the viewer and the p1- and p2- axes come toward
him /her. The viewer’s eye is situated below the p1-p2 plane and the surface is concave, not
convex (as it appears). H is, of course, maximum at p1 = p2 = p3 = 1 /3.
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4. Information of Events with Discrete Outcomes 37

observing the outcome of such an event. Just for the fun of it, Figure 4.2 depicts an event with 3
possible outcomes with probabilities p1, p2 and p3. Since p3 = 1 − p1 − p2, H can be plotted along the
z-axis as a function of the two variables p1 and p2. H is maximum for p1 = p2 = p3 = 1/3.

Just a note on the appropriateness of the log-function as a means of expressing information.
Suppose we toss a fair coin. Then the head-tail information we obtain is log22 = 1 bit. If we toss the
coin a second time, we receive an additional 1 bit of information. Therefore, the total amount of
information that we receive by observing the results of 2 sequential tosses is 2 bits. Suppose, now, that
we place 2 coins in a closed box, shake the box, and observe the results of the simultaneous toss. How
much information do we receive? Well, there are 4 equally probable outcomes to the simultaneous toss:
HH, HT, TH, TT. Therefore, the quantity of information received is equal to log24 = 2 bits, the same
amount we received by tossing the two coins sequentially. Any other result would have been untenable.

A CHANNEL OF COMMUNICATION

We consider now some means of transmitting a message between two stations. The means is
arbitrary. It could be electrical or optical, such as that used for a telephone, or even acoustical such as
that used for ordinary speech. In order to simplify the initial discussion, suppose that only two symbols
are transmitted: 1 or 0; that is, messages consist purely of strings of 0’s and 1’s. Let us suppose, also,
that our channel transmits without error, so that each time the transmitter sends 0, the receiver gets 0,
etc. For purposes of illustration, suppose that the probability of transmitting 0 is 0.2 and the probability
of transmitting 1 is 0.8 (Figure 4.3). We can represent the probabilities of symbols (0, 1) for the
transmitter (source) by the vector (0.2, 0.8), and the probabilities of symbols (0, 1) for the receiver by
the same vector (0.2, 0.8). The transmitter, or source entropy is given by

Hsource = −∑
i=1

2

ps logps = − 0.2 log0.2 − 0.8 log0.8 .

Similarly, the receiver entropy is given by

Hreceiver = −∑
i=1

2

pr logpr = − 0.2 log0.2 − 0.8 log0.8 .

The information received by the receiver is then

, = Hsource = Hreceiver .     (4.9)

Now the realities of communication are such that interference, or noise, usually affects the
transmission of signals through a channel, resulting in errors at the receiver. That is, the transmission of
a zero will sometimes result in the receipt of a one and vice versa. In this case, the information
received, , , will not be equal to Hsource or to Hreceiver. We shall now develop equations governing the
information received when a signal is received from such a noisy channel. Only a little in the way of
basic mathematics is required: some facility with iterated summation operators such as ∑j=1

n ∑k=1
n , and

Figure 4.3 Information transmission in a noiseless channel. The probability of transmission of
x1 equals 0.8 and, since p(y1 | x1) = 1, therefore probability of receipt of y1 equals 0.8, etc.
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Figure 4.4 Schema for a noisy channel.

the definition of conditional probability. We deal with signals transmitted, for which we use the symbol
x j, and signals received, for which we shall use the symbol yk. Let us generalize our lexicon of
transmitted symbols from 2 to n. Then, for example, pj(x1) represents the probability of transmitting
signal x1, and pk( y3) represents the probability of receiving signal y3. In general, then, pj(x j) represents
the probability of transmitting the signal x j, and pk( yk) represents the probability of receiving the signal
yk. To simplify the nomenclature, we can drop the subscripts following the p without introducing any
ambiguity: p(x j) will mean pj(x j), etc. We define p(x j | yk) as the conditional probability of x j given yk;
that is the probability that signal x j was transmitted given that signal yk was received. p(yk |x j) is
defined analogously. We further define p(x j, yk) as the joint probability that x j was transmitted and yk

received. From the definition of conditional probability emerge two fundamental equations that we use
on various occasions:

p(x j, yk) = p(x j |yk) � p( yk)
p(x j, yk) = p( yk |x j) � p(x j)

    (4.10)

    (4.11)

where the dot signifies ordinary multiplication.
The sequence of events is now depicted by the well-known diagram shown in Figure 4.4.
A key feature of the noisy channel is what one might call residual uncertainty. The simple coin

tossing paradigm involved, ostensibly, no noise, so that when we observed the outcome of a toss to be
“heads,” there were no lingering doubts that perhaps it was really “tails” and we had misread the face
of the coin. For this reason, we could write simply

, = H = −∑ p ln p .

In the more general case, however, receipt of the signal yk still leaves some residual uncertainty;
p(x j |yk) gives the probability, not always zero, that some signal other than x j may have been
transmitted. Therefore, , is not longer simply equal to −∑ p(x j) ln p(x j). In fact , is less than this
amount due to the residual uncertainty. In general, for noisy channels

, = Hbefore − Hafter .     (4.12)

That is, the transmitted information is equal to the difference between the source entropy or
uncertainty, Hbefore, given as usual by −∑ p(x j) ln p(x j), and the residual entropy, Hafter.

The noisy channel will now be analyzed mathematically in two different ways: (a) by the methods
of communication theory, and (b) by the methods of mathematical psychology. The two methods will
lead to identical results, but there is something to be learned by examining both methods. The
“minimalist” reader may certainly skip over the next section and proceed directly to the section of
psychological methods (The Noisy Channel II).

THE NOISY CHANNEL I:

The information about a transmitted ensemble of signals contained in the received ensemble of
signals

Equation (4.1), which introduced us to the entropy concept, is a weighted average of the logarithms
of the probabilities of the possible outcomes. We shall now go back a step – actually recede to a step
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more elementary than Equation (4.1) – and examine the individual possible outcomes, rather than their
average. However, we shall carry out this examination within the context of a noisy channel.

Following Middleton (1960), let us generalize the example of Figure 4.3 to include the presence of
noise. Again we revert to the case of only two possible signals, but now we allow the possibility of
mistakes [Figure (4.5), Box 4.1]. x1 and x2 will designate the transmitted signals, y1 and y2 the
corresponding received signals. As before, let p(x1) = 0.8 and p(x2) = 0.2. Various non-zero
conditional probabilities, p(x j |yk), selected arbitrarily, are indicated on the diagram:

p( y1 |x1) = 5 / 8

p( y2 |x1) = 3 / 8

sum to 1 .
Similarly

p( y1 |x2) = 1 / 4

p( y2 |x2) = 3 / 4

sum to 1 .

p( yk), the probability of receiving yk, is given by the equation

p( yk) = p(x1, yk) + p(x2, yk)
= p( yk |x1) � p(x1) + p( yk |x2) � p(x2) .     (4.13)

Thus
p( y1) = (5 / 8) (0.8) + (1 / 4) (0.2) = 0.55

p( y2) = (3 / 8) (0.8) + (3 / 4) (0.2) = 0.45 .

The p( yk) are entered in Figure 4.5.
We now make the following definitions:

+ (x j) = logp(x j) = initial or a priori uncertainty

of the receiver about occurrence of x j .     (4.14)

+ (x j |yk) = − logp(x j |yk) = final or a posteriori uncertainty

of the receiver about occurrence of x j

after yk has been received.     (4.15)

For example, a “ zero” was received ( yk), but was a “ one” really transmitted (x j)? Then introducing
the idea expressed by Equation (2.4) and (4.12) that

Information = Hbefore − Hafter ,

we have

, (x j |yk) = + (x j) − + (x j |yk)
= log[p(x j |yk) / p(x j)]

    (4.16)

    (4.17)

from Equations (4.14) and (4.15). ,m is known as the mutual information of x j and yk.
The purpose of the example of Figure 4.5 is to calculate ,m(x j |yk) for all pairs ( j, k); therefore, we

shall need values of p(x j |yk). We can calculate this conditional probability using the values for p(x j),
p( yk) and p( yk|x j) that have been entered in the diagram. Equating the right-hand sides of Equations
(4.10) and (4.11),

p(x j |yk) = p( yk |x j) p(x j) / p( yk) .     (4.18)
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Box 4.1 Signals transmitted with probability p(X ) and received with probability p( y)

The values for p( y) were obtained in the following manner.

p( yk) = ∑j=1
2 p(x j, yk), therefore,

p( y1) = p(x1, y1) + p(x2, y1)
= p( y1 |x1) � p(x1) + p( y1 |x2) � p(x2) ,

by Equation (4.13),
= (5 / 8 × 0.8) + (1 / 4 × 0.2) = 0.55

p( y2) = p(x1, y2) + p(x2, y2)
= p( y2 |x1) � p(x1) + p( y2 |x2) � p(x2)
= (3 / 8 × 0.8) + (3 / 4 × 0.2) = 0.45 .

Having obtained the p( yk) we can now calculate the p(x j |yk).

p(x1 |y1) = p( y1 |x1) � p(x1) / p( y1) = (5 / 8) × (0.8) / (0.55) = 0.90� 9�

p(x2 |y1) = p( y1 |x2) � p(x2) / p( y1) = (1 / 4) × (0.2) / (0.55) = 0.090� 9�

p(x1 |y2) = p( y2 |x1) � p(x1) / p( y2) = (3 / 8) × (0.8) / (0.45) = 0.666�

p(x2 |y2) = p( y2 |x2) � p(x2) / p( y2) = (3 / 4) × (0.2) / (0.45) = 0.333�

We can now calculate the mutual informations from Equations (4.16) and (4.17).

,m(x j |yk) = + (x j) − + (x j |yk)

= − logp(x j) + logp(x j |yk) = log
p(x j |yk)

p(x j)

,m(x1 |y1) = log
p(x1 |y1)

p(x1) = log(0.909 / 0.8) = 0.128 n.u.

,m(x2 |y1) = log
p(x2 |y1)

p(x2) = log(0.0909 / 0.2) = −0.788 n.u.

,m(x1 |y2) = log
p(x1 |y2)

p(x1) = log(0.666 / 0.8) = −0.182 n.u.

,m(x2 |y2) = log
p(x2 |y2)

p(x2) = log(0.333 / 0.2) = 0.511 n.u.

Figure 4.5 Information transmission in a noisy channel (cf. Figure 4.3 for a noiseless channel).
The probabilities 5/8, 1/4, 3/8, 3/4 are conditional probabilities, p(Y | X ). The values for p(y) are
calculated from p(X ) and p(Y | X ) in the text.
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The details of the calculations are given in Box 4.1, and the results are summarized below:

,m(x1 |y1) = 0.128 natural units (n.u.)

,m(x2 |y1) = −0.788 n.u.

,m(x1 |y2) = −0.182 n.u.

,m(x2 |y2) = 0.511 n.u.

We notice a strange phenomenon: ,m(x2 |y1) and ,m(x1 |y2) have negative values. The receiver has
obtained negative information; his uncertainty about the transmitted signal is greater having received a
signal than it was before the signal was transmitted. This result occurs when the conditional probability
for x, for example p(x2 |y1), is less than the original probability for x, p(x2).

The example of Figure 4.5 can be expanded to include n > 2 possible signals.
The mutual information, ,m(x j |yk), is interesting heuristically, but our primary concern is the

average information gain by the receiver. In the case of the noiseless channel we dealt with this matter
by taking the expectation, E, of the logs of the transmission probabilities (see for example, Freund and
Walpole [1980] or any standard text on probability),

H = −E[logpi] = −∑
i=1

n

pi logpi .     (4.1)

We shall approach the noisy channel in the same way, mutatis mutandis.
Let us define

H(X ) = E[+ (X )] = −∑
j=1

n

p(x j) logp(x j) .     (4.19)

H(X ), the source entropy (cf. Equation (4.9) above), is the average a priori uncertainty about
occurrence of x (before any x j occurs). Recalling the result of Equation (4.8), we see that H(X ) will be
maximum when all p(x j) are equal.

In a similar fashion, we can define the conditional entropy, H(X |y), for the set of transmitted x j

given the received set yk:

H(X |y) = Exy[+ (x |y)] = −∑
j=1

n

∑
k=1

n

p(x j, yk) logp(x j |yk) .     (4.20)

That is, the logarithms of the probabilities of x j given yk are averaged by means of a weighted sum
of the joint probabilities of the occurrence of x j and yk. H(X |y) is, then, the average a posteriori
uncertainty about the set of x j after the set yk has been received. It represents the information lost in
transmission and is sometimes known as the equivocation.

Again using the principle expressed by Equations (2.4), (4.12) and (4.16) we write

, (X |y) = H(X ) − H(X |y) .     (4.21)

, (X |y) is the average mutual information; or the average information about the ensemble of
transmitted signals, X, contained in the ensemble of received signals, Y; or the average transmitted
information. It will be referred to simply as the transmitted information. Expressing Equation (4.21) in
words,

transmitted information = source entropy – equivocation

= source entropy – information loss due to errors in transmission.

Equation (4.21) is an explicit form of Equation (4.12). Written in full,

, (X |y) = −∑
j=1

n

p(x j) logp(x j) + ∑
j=1

n

∑
k=1

n

p(x j, yk) logp(x j |yk) .     (4.21a)
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An alternative formulation of this equation is (see Appendix)

, (X |y) = −∑
j=1

n

p(x j) logp(x j) + ∑
k=1

n

p( yk) ∑
j=1

n

p(x j |yk) logp(x j |yk) .     (4.21b)

It can be shown that , (X |y) is always equal to or greater than zero.1 When the channel is noiseless,
p(x j, yk) = 0 for all j ≠ k, so that from Equation (4.20), H(X |y) = 0, and Equation (4.21) becomes
effectively identical to (4.1).

In the same way we define

H(X, y) = −∑
j=1

n

∑
k=1

n

p(x j, yk) logp(x j, yk)     (4.22)

where H(X, y) is the joint entropy of the ensembles. Analogously we can define the receiver entropy,
H( y), and the information , (Y |X ). Various interesting relationships among these variables emerge, for
which the reader is referred to the standard textbooks on communication theory.

The derivation of Equation (4.21) was our primary aim in this section. We shall now reorient
ourselves and examine the noisy channel from the point of view of the psychologist of the 1950’ s.

THE NOISY CHANNEL II:

The information required for a categorical judgment. The “confusion” matrix

It was but three years after the appearance of Shannon’ s seminal work that Garner and Hake (1951)
published their well-known paper entitled “ The Amount of Information in Absolute Judgments.” We
shall derive Equation (4.21) again, but now within the context of a Garner-Hake experiment involving
human judgments, rather than by analysis of the transmission of signals through a channel. Actually,
there is no salient difference between these two paradigms, but it is instructive to look at the same
problem in a different way.

The idea of an experiment involving judged categories can be illustrated with the following simple
example. Suppose that there are three rods whose lengths are 10 cm, 20 cm and 30 cm. A subject is
shown the 10 cm rod and told that it has a length of 10 cm; he or she is then shown the 20 cm rod and
told that it has a length of 20 cm, etc. Thereafter, the experimenter draws the rods from the table and
shows them to the subject, who tries to identify the rod as 10-, 20- or 30-cm by visual examination. The
subject is not permitted to measure the rods. However, the chances are good that he or she will never
make a mistake; the 10-cm rod will always be identified as 10 cm long, etc. Let us call the actual rod
presented to the subject the stimulus (the 10-cm rod will be stimulus 1, the 20-cm rod, stimulus 2, and
the 30-cm rod, stimulus 3), and let us call the subject’ s identification or reply, the response (the
identification this rod is rod 1 will be response 1, etc.) Suppose the experiment continues until 100
stimulus-responses have been made. We can represent the stimuli by x j, j = 1,2,3, and the responses by
yk, k = 1,2,3. That is, x2 will represent a trial where the subject is presented with the 20-cm rod for
identification, and y3 will represent the act of the subject in identifying the 30-cm rod. The results of
such an experiment will probably look much like those shown in Table 4.1. In this example the 10-cm
rod stimulus was given 33 times (x1 = 33) and correctly identified 33 times (y1 = 33). It was never
incorrectly identified as the 20-cm rod or the 30-cm rod. The 20-cm rod was given 34 times, etc. The
columns and rows are each summated and, of course, the sum of sums for rows and the sum of sums for
columns are each equal to 100. In the stimulus-response matrix depicted by the Table 4.1 only the
diagonal elements are non-zero.

Suppose that the three rods are now cut to 20 cm, 22 cm and 24 cm, and the experiment is repeated.
The subject is now going to make mistakes in identification. A possible stimulus-response matrix is
shown in Table 4.2. In this hypothetical experiment the stimulus x1, the 20-cm rod, was presented 33
times in all, was correctly identified only 21 times, was identified as y2 on 7 occasions and as y3 on 5
occasions. The stimulus-response matrix is no longer diagonal. The non-zero off-diagonal elements
represent mistakes in identification (cf. errors in signal transmission). It would seem clear that a
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Table 4.1 Three rods of lengths 10, 20 and 30 cm

Response Categories, yk

Stimulus categories, x j y1 = 10 cm y2 = 20 cm y3 = 30 cm Totals

x1 = 10 cm 33 0 0 33

x2 = 20 cm 0 34 0 34

x3 = 30 cm 0 0 33 33

Totals 33 34 33 100

stimulus-response matrix (sometimes called a “ confusion” matrix) is, in principle, the same as a
transmission-receipt matrix for a standard communication channel such as a telephone; in place of
“ stimulus” read “ signal transmitted” and in place of “ response” read “ signal received.”

There are three restrictions to the type of category experiment with which we shall be dealing. First,
we are concerned only with those experiments dealing with stimuli of the “ intensity” type, such as the
intensity of light or of sound or the concentration of a solution or the magnitude of a force. That is, we
shall not be concerned with stimuli such as the length of rods, although they served as a simple
introduction to the confusion matrix. Second, we are interested primarily in the set of stimuli that span
the totality of the physiological range, from threshold to maximum non-painful stimulus; for example
auditory stimuli will extend from threshold to about 1010 or 1011 times threshold. The upper limit to the
range of stimuli is often hard to define. Third, we are concerned primarily with the results obtained
from “ trained” subjects; that is, with subjects who have had as much time as desired to practice and
learn which stimulus corresponds to which category. We speak more about the design of these
experiments after we discuss the methods of analysis.

Let us now generalize the discussion of the stimulus-response matrix. Except for some minor
changes in nomenclature, we follow the method of Garner and Hake. Although the number of stimulus
categories need not, in principle, be equal to the number of response categories, we take them to be
equal, just for simplicity.

Let N be the total number of trials, or the number of times a stimulus was presented to a given
subject in the course of a single experiment. Then Njk is the number of times a stimulus in category j
was given and identified to be response category k. That is, N35 is the number of times stimulus
category 3 was given by the investigator but identified or judged (incorrectly) to be (response) category
5. The Njk can be tabulated as in Table 4.3. The sum of all elements in the k th column equals N�k . That
is,

∑
j=1

n

Njk = N�k .     (4.23)

Table 4.2 Three rods of lengths 20, 22 and 24 cm

Response Categories, yk

Stimulus categories, x j y1 = 20 cm y2 = 22 cm y3 = 24 cm Totals

x1 = 20 cm 21 7 5 33

x2 = 22 cm 8 24 2 34

x3 = 24 cm 5 9 19 33

Totals 34 40 26 100
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Similarly, the sum of all elements in the jth row equals Nj � . That is,

∑
k=1

n

Njk = Nj � .     (4.24)

The total number of stimuli given is equal to the total number of responses made:

∑
k=1

n

N�k = ∑
j=1

n

Nj � = N .     (4.25)

We can define the joint probability p(x j, yk) by

p(x j, yk) = Njk / N .     (4.26)

We can also define the following probabilities, a posteriori, using N�k, Nj � and N :

p(x j) = Nj � / N

p( yk) = N�k / N .

    (4.27)

    (4.28)

Similarly, we can define the conditional probabilities

p(x j |yk) = Njk / N�k ,     (4.29)

which is the conditional probability of stimulus x j given response yk; and

p( yk |x j) = Njk / Nj � ,     (4.30)

which is the conditional probability of response yk given stimulus x j. Each of the equations (4.26),
(4.29) and (4.30) provides the elements for a new matrix, which are shown in Tables 4.4a - 4.4c. We
observe that all of the elements in the matrices shown in Tables 4.3 and 4.4 can be evaluated from the
data collected in an experiment on categorical judgments performed in the manner described above.

Recalling again the two defining equations for conditional probability,

p(x j, yk) = p(x j |yk) � p( yk)     (4.10)

p(x j, yk) = p( yk |x j) � p(x j) .     (4.11)

The above two equations are verified by the a posteriori Equations (4.26) to (4.30). For example,
using Equations (4.28) and (4.29), we can evaluate the right-hand side of Equation (4.10):

p(x j |yk) � p( yk) = Njk

N�k
�

N�k
N = Njk

N .

By Equation (4.26), the left-hand side of (4.10) is given by Njk / N, as required.

Table 4.3 Generalized Stimulus-Response Matrix

Response categories

Stimulus categories y1 y2 yk yn Total

x1 N11 N12 N1k N1n N1 �

x2 N21 N22 N2k N2n N2 �

x j N j1 N j2 N jk N jn N j �

xn Nn1 Nn2 Nnk Nnn Nn �

Total N �1 N �2 N � k N �n N
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Table 4.4a Dividing Each Element of the Stimulus-Response Matrix in Table 4.3 by N
[Equation (4.26)] Produces a Matrix of Joint Probabilities, p(x j, yk).

Response categories

Stimulus categories y1 yk yn

x1 p(x1, y1) p(x1, yk) p(x1, yn)

x2 p(x2, y1) p(x2, yk) p(x2, yn)

x j p(x j, y1) p(x j, yk) p(x j, yn)

xn p(xn, y1) p(xn, yk) p(xn, yn)

Table 4.4b Dividing Each Element of the Stimulus-Response Matrix in Table 4.3 by N .k

[Equation (4.29)] Produces a Matrix of Conditional Probabilities, p(x j | yk).

Response categories

Stimulus categories y1 yk yn

x1 p(x1| y1) p(x1| yk) p(x1| yn)

x2 p(x2| y1) p(x2| yk) p(x2| yn)

x j p(x j | y1) p(x j | yk) p(x j | yn)

xn p(xn| y1) p(xn| yk) p(xn| yn)

Table 4.4c Dividing Each Element of the Stimulus-Response Matrix in Table 4.3 by N j.

[Equation (4.30)] Produces a Matrix of Conditional Probabilities, p(yk | x j).

Response categories

Stimulus categories y1 yk yn

x1 p(y1| x1) p(yk| x1) p(yn| x1)

x2 p(y1| x2) p(yk| x2) p(yn| x2)

x j p(y1| x j) p(yk| x j) p(yn| x j)

xn p(y1| xn) p(yk| xn) p(yn| xn)

We require, now, one final definition. Let

P(x j, yk) = p(x j) � p( yk) .     (4.31)

We can interpret the quantity P(x j, yk) as the probability of occurrence of two independent events.
These independent events occur with probabilities p(x j) and p( yk). For example, if a coin is tossed on
two occasions, the outcomes of the two tosses are independent. The probability of heads on the first
toss is 1

2 and the probability of heads on the second toss is 1
2 . Therefore the probability of heads on

both tosses equals 1
2 × 1

2 = 1
4 . However, the outcome yk is, in general, not independent of the

outcome x j. That is, response yk is not, in general, independent of the applied stimulus, x j. In fact, we
believe that the outcome of stimulus events and response events are quite closely related. If x j and yk

were independent or “ uncoupled” for some observer, P(x j, yk) would give the probability of
concurrence of the two outcomes. He or she would, however, be the poorest possible observer, since his
or her responses would be totally unrelated to the corresponding stimulus (see, however, the problem
for the reader in Chapter 5, Psychology: Categorical Judgments).

Now, we have defined the joint entropy of this stimulus-response system by Equation (4.22)

H(X, y) = −∑
j=1

n

∑
k=1

n

p(x j, yk) logp(x j, yk) .     (4.22)
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Therefore, we can define the maximum joint entropy by

H(X, y)max = −∑
j=1

n

∑
k=1

n

P(x j, yk) logP(x j, yk) .     (4.23)

The maximum entropy corresponds to the most “ disordered” system, which, in turn, corresponds to
the system in which input (stimulus) and output (response) are totally uncorrelated. In such a system
joint entropy is equal to H(X, y)max. In such a system no information about the stimulus is transmitted to
the subject since he or she does not associate a given response with any particular stimulus.

We can now present an alternative to Equations (4.12) and (4.21), which stated that the average
information about the ensemble of transmitted signals or stimuli contained in the ensemble of received
signals or responses is given by

, (X |y) = H(X ) − H(X |y)

= Hbefore − Hafter .

    (4.21)

We now introduce as an equivalent mathematical statement

, (X |y) = H(X, y)max − H(X, y) .     (4.33)

The quantities on the right-hand side can be evaluated using Equation (4.22) and (4.32) which, in
turn, can be evaluated from the measured results. Equation (4.33) is, perhaps, more easily understood
intuitively than (4.21). When H(X, y) takes on its maximum value (transmitted and received signals
independent), the transmitted information, , (X |y), equals zero as required. When H(X, y) takes on its
minimum value, , (X |y) is maximum. But , (X |y) is maximum when no errors in identification are
made; that is when the matrix elements Njk = 0 for j ≠ k. We can see from Table 4.1 that under these
conditions, Equation (4.33) reduces to

, (X |y) = H(X ) .     (4.34)

With reference now to Equation (4.21), we see that , (X |y) is maximum when the equivocation,
H(X |y), is equal to zero, when we have

, (X |y) = H(X ) .     (4.34)

So we obtain the same asymptotic result from (4.21) and (4.33). Therefore, on first glance,
Equation (4.21) and (4.33) seem to exhibit similar properties. The interested reader is referred to the
Appendix for a detailed proof that these equations are actually identical.

Equation (4.21) may be written in words:

Information transmitted = stimulus entropy – stimulus equivocation.     (4.35)

We may now add a symmetrical equation,

, (Y |X ) = H( y) − H(Y |X )     (4.36)
or, expressed in words,

Information transmitted = receiver entropy – receiver equivocation.     (4.37)

SUMMARY

Amid the maelstrom of equations in this chapter, let us keep in mind that what we have done is, in
the final analysis, very simple. We have demonstrated in two ways (using the paradigm of a
transmission line and of an experiment on categorical judgments) that information transmitted for a
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noisy channel, , (X |y), may be calculated from Equations (4.21) and (4.36):

, (X |y) = H(X ) − X(X |y)
= H( y) − H(Y |X ) bits per signal or bits per stimulus.

Some of the probabilities used to calculate , (X |y) may be known a priori, such as the p(x j), the
probability of transmission of a signal or of application of a stimulus. Other probabilities may only be
known a posteriori, after an experiment has been conducted. We shall run through an example of the
calculation of , (X |y) in the next chapter.

The above equations have been derived from two ostensibly distinct, but nonetheless equivalent,
starting points. We began with

, (X |y) = Hbefore − Hafter ,     (4.12)

and alternatively with
, (X |y) = H(X, y)max − H(X, y) .     (4.33)

Both viewpoints led to the same conclusion.
We note, finally, that when the equivocation, H(X |y), is equal to zero, we obtain

, (X |y) = H(X ) ,     (4.34)

which is the information transmitted for a noiseless channel, as expressed by Equation (4.1).

THE BOTTOM LINE

In order to calculate the average mutual information, , (X |y), one may use either Equation (4.21a)
or (4.21b). Either of these equations may be conveniently utilized in a computer program, such as the
one given in Chapter 5.

APPENDIX: THE EQUIVALENCE OF EQUATIONS (4.21) AND (4.33)

To demonstrate that
, (X |y) = H(X ) − H(X |y)     (4.21)

and
, (X |y) = H(X, y)max − H(X, y)     (4.33)

are identical.
Beginning with Equation (4.33), we expand the right-hand side using Equations (4.22) and (4.32):

, (X |y) = −∑
j=1

n

∑
k=1

n

P(x j, yk) logP(x j, yk)

+ ∑
j=1

n

∑
k=1

n

p(x j, yk) logp(x j, yk) .     (A4.1)

The first double summation on the right-hand side can be simplified by introducing Equation
(4.31), the defining equation for P(x j, yk):

− ∑
j=1

n

∑
k=1

n

P(x j, yk) logP(x j, yk) = −∑
j=1

n

∑
k=1

n

p(x j) p(yk) log[p(x j) p( yk)]

= −∑
j=1

n

∑
k=1

n

p(x j) p( yk) logp(x j) − ∑
j=1

n

∑
k=1

n

p(x j) p( yk) logp( yk)

= −∑
j=1

n

p(x j) logp(x j) ∑
k=1

n

p( yk) − ∑
j=1

n

p(x j) ∑
k=1

n

p( yk) logp( yk) .
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Since ∑j=1
n p(x j) = 1 = ∑k=1

n p( yk),

− ∑
j=1

n

∑
k=1

n

P(x j, yk) logP(x j, yk)

= −∑
j=1

n

p(x j) logp(x j) − ∑
k=1

n

p( yk) logp( yk)

= H(X ) + H(y)     (A4.2)

by Equation (4.19) and its analog.
Continuing with the second double summation on the right-hand side of Equation (A4.1),

∑
j=1

n

∑
k=1

n

p(x j, yk) logp(x j, yk)

= ∑
j=1

n

∑
k=1

n

p( yk)p(x j |yk) log[p( yk)p(x j |yk)]

using Equation (4.11),

= ∑
j=1

n

∑
k=1

n

p( yk) logp( yk) � p(x j |yk) + ∑
j=1

n

∑
k=1

n

p( yk) p(x j |yk) logp(x j |yk)

= ∑
k=1

n

p( yk) logp( yk) ∑
j=1

n

p(x j |yk) + ∑
j=1

n

∑
k=1

n

p( yk) p(x j |yk) logp(x j |yk)

= ∑
k=1

n

p( yk) logp( yk) + ∑
j=1

n

∑
k=1

n

p(x j, yk) logp(x j |yk)

    (A4.3)

    (A4.4)

(since ∑j=1
n p(x j |yk) = 1)

= −H(y) − H(X |y) ,     (A4.5)
where

H(y) = −∑
k=1

n

p( yk) logp( yk) = receiver entropy     (A4.6)

and

H(X |y) = −∑
j=1

n

∑
k=1

n

p(x j, yk) logp(x j |yk) = source equivocation.     (4.20)

Combining Equations (A4.1), (A4.2) and (A4.5), we have

, (X |y) = H(X ) + H(y) − H(y) − H(X |y)

, (X |y) = H(X ) − H(X |y) .     (A4.7) / (4.21)

We observe that Equation (A4.7) is identical to Equation (4.21). This equation gives the average
mutual information, or the average information about the

ensemble of
transmitted signals

stimuli
X ,

contained in the

ensemble of
received signals

responses
Y ,

or the average transmitted information.
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Therefore, we have converted the right-hand side of Equation (4.33) into the right-hand side of
Equation (4.21), showing that the equations are identical.

If we evaluate the second double summation on the right-hand side of Equation (A4.1) using the
conditional probability p( yk|x j), we can obtain in the same way Equation (4.36). Finally we should note
that if we write

p(x j, yk) = p( yk) p(x j |yk) ,     (4.11)

introduce this quantity into Equation (4.20) and reverse the order of summation, we have

H(X |y) = −∑
k=1

n

p( yk) ∑
j=1

n

p(x j |yk) logp(x j |yk)     (A4.8)

which is an alternative formulation of H(X |y). This equation was used to derive Equation (4.21b).

NOTES

1. There are very few “ It can be shown that” ’ s in this book. I, personally, regard that phrase with a
degree of suspicion: I suspect the author really can’ t prove it, and this is his way of getting off the hook.
But what really elevates suspicion to the point of certainty is when the author writes ” It can easily be
shown that.” How many hours I have whiled away just to prove things that one author or another had
found so obvious that it was not worth demonstrating! Would it have taken me that long if it could be
“ easily shown” ? Certainly not! I’ m sure the author is bluffing. All of them are. It can’ t be me.
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