
CHAPTER 9

MODELING THE H-FUNCTION

It is time to pick up the thread of the argument that was begun in Chapter 2. The fundamental
equation (2.6) was proposed,

F = kH ,     (2.6) / (9.1)

where F is a perceptually related variable such as subjective magnitude or impulse frequency in a
sensory neuron, k is a constant that is greater than zero, and H is the entropy of a stimulus. Since H can
be regarded as an uncertainty, or perhaps as a potential for receipt of information, F is a measure of this
uncertainty or potential to receive information. Therefore, Equation (2.6)/(9.1) states that a quantity, F,
which can be measured in the laboratory, is, in effect, a measure of uncertainty. In Chapter 2, it was
suggested that the “denomination” of this uncertainty – that is, the quantity which is uncertain – is the
exact value of the physical magnitude or intensity of the stimulus. This process of setting a measurable
quantity proportional to an uncertainty no doubt strikes some people as enigmatic, to say the least.
However, we may recall that we have already encountered this process in Chapter 6 in our survey of
statistical mechanics. Boltzmann had discovered that

S = kB ln W = kBHI ,     (6.20) / (6.21)

where S is the thermodynamic entropy of a gas under equilibrium conditions, and kB is now known as
Boltzmann’s constant. The denomination of the uncertainty, H, is the exact microstate corresponding to
a given macrostate. A measurable quantity had been set equal to an uncertainty.

“Aha!” you may be thinking.
“So F = kH has been modeled after S = kBHI!”

Would that I possessed such insight. There seems to be no direct link connecting physical entropy, S,
with, for example, neural impulse rate as measured by F. There certainly have been studies involving
the thermodynamic entropy of neural processes (e.g. Margineanu, 1972), but these studies have not, to
my knowledge, been related to perceptual function. We shall, however, draw the equations F = kH and
S = kBHI quite closely together in Chapter 15.

“Then what reasoning led you to postulate F = kH?” you may ask. A rather different sort of
reasoning, closer to the philosophy of Berkeley than to the physics of Boltzmann.

Now is a good time to look back at Figure 1.2, which gives the order of exposition. We have
proceeded to the right, across the top of the flow diagram, down the right-hand side, and partway across
the bottom. We are now moving toward the block at the lower left corner. The center block (validation)
will take us through a number of chapters. We shall then proceed up the left-hand side of the diagram to
reach Berkeley, with whose concept of “relative perception” we really began.

At the level of Chapter 2, we had developed only the concept of entropy or information of events
with discrete outcomes. So, in order to introduce Equation (9.1), it was necessary to postulate the
existence of an organism that could perceive only discrete stimuli. That is, the organism could
determine only that the stimulus assumed the values I1, I2, ..., In, but could not perceive a continuum of
intensities1. Then, if the probabilities of occurrence of the stimuli were equal, H = logn, and
F = kH = k logn: F was proportional to the logarithm of the number of equally probable stimulus
intensities. This discrete representation certainly produces some conceptual problems, which I tried to
mitigate, tentatively, in Note 6 to Chapter 2. The discrete representation, however, was intended
primarily as a vehicle to introduce Equation (9.1). A more realistic interpretation of (9.1) requires that
H be a measure of entropy in a system with continuous outcomes; that is, a system where intensity, I,
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can vary continuously. For this reason, we took a long digression through Chapters 4, 5, 7 and 8. We
should now be in possession of the conceptual apparatus necessary to proceed.

THE SENSORY RECEPTOR AS A QUANTUM DETECTOR

Many of the ideas developed here were put forward by the author in 1977.
The sensory stimulus belongs most properly to the microscopic or quantum world. Fewer than 10

molecules of an odorant may be detected by the olfactory receptor(s). About 15 photons may be
required to see a flash of light (Barlow and Mollon, 1982, page 127). Certainly when operating at these
near-liminal levels, the sensory detector can be regarded as a “ quantum detector.” However, the
sensory afferent neuron issuing from these receptors, and most particularly the brain to which these
neurons report, does not seem to be equipped to detect individual quanta (molecules, photons ...). Let
me elaborate.

As stated before, we are concerned in this book primarily with constant stimuli of the intensity
type; that is, with stimuli of light, sound, concentration, etc. that are presented in the form of step
functions (Figure 1.1). However, to be more precise it should be said that we shall be dealing with
stimuli whose mean or average value is constant, since most stimuli of the intensity type consist of a
multitude of small particles or bundles of energy whose density is changing on a moment to moment
basis (Figure 9.1). For example, if it is stated that the stimulus is an 0.1 M solution of sucrose, what is
meant is that the bottle of stock solution contains 0.1 mole of sucrose per litre of solution. However,
due to random movements of sucrose molecules in solution, a very small sample of this solution will
seldom consist of exactly the stated concentration. The concentration of a very small sample will
fluctuate about the value of 0.1 M. Therefore, the sensory receptors, which sample only very small
quantities of the stimulus solution, will detect variable concentrations of sucrose even when the
stimulus is (macroscopically) constant (Figure 9.1). Similarly, the photoreceptor, even when stimulated
by a macroscopically constant light stimulus, will record a fluctuating photon density.

Not all the sensory stimuli that we deal with can be reduced to a density fluctuation diagram such
as Figure 9.1, but the principle of fluctuation about the mean will still prevail. For example, if we
apply a sudden, constant load to a tendon which activates a stretch receptor, there will be a period of
transient oscillation, followed, probably by small, sustained fluctuations about the mean force,
produced by muscle and elastic elements. Similarly, sound waves which activate the hearing
mechanism consist of fluctuations in air pressure, etc.

The receptors are quantum receptors and, therefore, detect quantum fluctuations. However, the
brain, which receives the report of sensory receptors, is not made aware of quantum fluctuations. The
message the brain receives concerns the level of the steady, macroscopic stimulus, which is the mean of

Figure 9.1 The large cube represents a large sample of a fluid containing 24 particles. Imagine
the boundaries of this cube as impermeable so that, although particles are free to move about,
they cannot escape from the large container. Particles move about randomly within this cube.
The small curves represent small samples of the fluid such as might be obtained by a sensory
receptor. The boundaries of the small cubes (in dotted lines) are just imagined boundaries, so
that particles are free to move in and out. Due to random movements of the particles, one of the
small cubes contains no particles, two of them contain one particle, and one contains three
particles. In this way, a sensory receptor may obtain 0, 1, 2, 3, ... particles in any one process of
sampling.
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the signals detected by the receptors. The fluctuating environment of the sensory receptor is translated,
presumably by a process of averaging, into a smooth report received at the brain. Since the message of
the sensory receptors is usually relayed to the brain by means of a neural frequency code, it is expected
that this frequency will also, usually, encode a smoothed or averaged signal (although, of course, we
cannot be sure).2

SAMPLING THE STIMULUS POPULATION

The receptor will be regarded as drawing samples from the stimulus population which, in turn, will
be regarded as an infinite population. Each sample will provide one value of the density of the stimulus.
For concentration, density equals the number of molecules per sampled fluid volume; for light, density
equals the number of photons per volume of light beam sampled. The samples are identically and
independently distributed. Hence, if the original population of densities had mean, µ, and variance σS

2

(‘S’ designates ‘Stimulus’), the mean of m samplings of the population will be a sample of size m,
which, by the central limit theorem, will tend toward the normal distribution with mean, µ, and
variance, σS

2 / m , as m increases (see Chapter 8).
At what rate does a sensory receptor make samplings of its stimulus population? We do not know.

We know only that such samplings must be occurring. In the absence of any definitive knowledge, I
suggest a sort of null conjecture:Q namely that the rate of sampling is constant, so that at time, t,

m = [t / ts] ,     (9.2)

where ts is the time between samples, and [t / ts] designates the greatest integer not greater than t / ts. In
a continuous representation,

m = αt , α constant > 0 .

α = dm / dt ,

    (9.3)

    (9,4)
or

sampling rate = dm / dt .     (9.5)

Clearly, for m small, the approximation of number of samplings, m, by the continuous variable, t,
will weaken; and additionally, for small m the acceptability of the central limit theorem weakens.
Therefore, the validity of the model for H as a function of t that we are developing will extend only
beyond some minimum value for the variable, t.

The differential entropy of the distribution of means is

HS = − ∫ p ln pdx ,     (9.6)

or explicitly (from Equation (8.18)),

HS = 1
2

ln(2πe σS
2 / m) ,     (9.7)

where p is the normal distribution with variance σ2/ m. We do not know the factors operating within
the receptor system that limit the precision with which a mean may be measured. However, we
understand from Chapter 7 that in the absence of such a “ noise” distribution, no information can be
received.

THE REFERENCE SIGNAL

Let us, therefore, assume the existence of “ Gaussian white noise,” which is just an interfering
signal whose probability density is normal. Since the term “ noise” is usually regarded in the pejorative,
let us designate this signal as reference instead. It is a stimulus signal without which information would
not be measurable. Accordingly, its variance will be designated by σR

2 , and its differential entropy by

HR = 1
2 ln(2πe σR

2 ) .     (9.8)
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The absolute entropy received per stimulus, H, is then given by

H = HS+R − HR = 1
2 ln[2πe (σS

2 / m + σR
2 )] − 1

2 ln(2πe σR
2 ) .     (9.9)

H = 1
2 ln(1 + σS

2 / mσR
2 ) .     (9.10)

In the theory that follows we shall take σR
2 to be constant for a given modality of sensation.

Introducing Equation (9.3),
H = 1

2 ln(1 + σS
2 / σR

2 α t ) .     (9.11)

Since F = kH from Equation (9.1), we have

F = 1
2 k ln(1 + σS

2 / σR
2 α t ) .     (9.12)

RELATIONSHIP BETWEEN VARIANCE AND MEAN

Equation (9.12), then, relates the perceptual variable, F, to σS
2, the variance of the stimulus

population, and t, the duration of the stimulus. Unfortunately, in this form, the equation is still not
readily applicable in the analysis of experiments, because σS

2 is not usually known. In the laboratory,
we measure the mean stimulus value, µ, but usually not the variance. It is, therefore, necessary to
introduce a relationship between mean and variance of the form

σS
2 = f (µ) ;     (9.13)

that is, σS
2 is some function of mean stimulus intensity, µ. However, in formulating such an equation it

is necessary to bear in mind where σS
2 is being “ measured,” and where µ is being measured. σS

2 is the
stimulus variance “ as seen by” the sensory receptor; it is the variance obtained by the receptor’ s
sampling of its stimulus environment. On the other hand, µ, the population mean, is estimated by the
investigator as I, the intensity of the constant stimulus (that is, µ = I ), at some convenient location
within the laboratory. For example, σS

2 for audition may be measured at the hair cells within the cochlea
in the inner ear, while µ = I = sound intensityQQ is usually measured by a sound level meter at the outer
ear. Hence, σ2 incorporates fluctuation arising from both the physical stimulus and the biological
receptor. Therefore, the character of the function, f (µ), is not obvious, although in the case of audition
some idea may be obtained from the work of Rhode (1971). I selected for f (µ), empirically, a simple
power function, so that

σS
2 ∝ µn, n constant > 0 ,     (9.14)

or, since µ = I,

σS
2 ∝ In .     (9.14a)

The constant, n, may differ among the modalities of sensation.
I chose this function for several reasons. First, relationships between mean and variance within

statistical physics often assume the form of Equation (9.14). For example (Jackson, 1968, or other
textbooks on statistical mechanics), for a monoatomic ideal gas in thermal equilibrium with a thermal
reservoir, and performing no mechanical work, the standard deviation of energy, σ(E ), is related to
mean energy, µ, by the relation

σ(E ) / µ = 1 / (3N/2) 1
2 ,     (9.15)

where N is the (constant) number of particles in the gas. That is,

σ(E )2 ∝ µ2 .     (9.15a)

As another example, the number, N, of photons in a monochromatic beam emitted per unit time by
a thermal source kept at constant temperature, will fluctuate. The general equation for σ2(N ), the mean
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square fluctuation, was found by Einstein. However, in the Wien approximation we have simply

σ(N )2 = µ .     (9.16)

Equations (9.15) and (9.16) are specific examples of mean-variance relationships of the form
(9.14).

A second reason for selecting Equation (9.14) is that a similar relationship might be expected from
any process wherein a total measurement, I, is the sum of a number of partial measurements. For
example, a length, ma, is measured by laying down m times a measuring rod of length a. Suppose that
each single measurement is regarded as a random variable whose standard deviation is σ1(a). Then, the
variance of the sum of m measurements, σ(ma)2, is equal to mσ1(a)2 by the rule of summing variances
of independent random variables (for example, Freund and Walpole 1980, p 157 or Weatherburn 1961,
p 27). That is,3

σ(ma)2 ∝ m = ma / a = I / a ,
or

σ(ma)2 ∝ I .     (9.17)

Total variance varies as the “ intensity” (= length here) of the whole, which is just a way of saying
that larger quantities are associated with greater fluctuations. The variance of measurements of the
separation of two marked points in two different cities will be expected to exceed the variance of
measurements of the separation of two marked points both within a given room.

None of the above examples demonstrate the validity of Equation (9.14); however, they illustrate
the plausibility of such a relationship.

THE ENTROPY FUNCTION

Introducing Equation (9.14a) into (9.11),

H = 1
2 ln[1 + (β U/ σR

2 ) In/ t )] ,     (9.18)

where β U is a proportionality constant > 0. Finally, condensing the constant β U/ σR
2 into a single

constant, β,

H = 1
2 ln(1 + β In/ t ) , [natural units] .     (9.19)

Of course, H [bits] is obtained by dividing H [natural units] by ln 2. Equation (9.19), then, gives the
absolute entropy of m samplings by a sensory receptor taken over an interval of time, t, of a stationary
stimulus population of mean intensity, I. Since F = kH,

F = 1
2 k ln(1 + β In/ t ) .     (9.20)

Before looking more deeply into the meaning of H as calculated from (9.19), let us review the
primary assumptions that have been used to derive Equations (9.19) and (9.20). Six of them are listed
below.

(1) There is a process of sampling by the receptor of its stimulus.
(2) The stimulus population approximates the normal distribution closely enough that the central

limit theorem will apply to a sample of almost any size drawn from the stimulus population.
(3) Sensory neurons encode their state of certitude concerning the mean stimulus intensity.
(4) The rate of sampling of a stimulus by its receptor is constant.
(5) A “ noise” or reference stimulus distribution is present. This reference stimulus is Gaussian with

constant variance.
(6) Stimulus variance at the receptor is a simple power function of the mean stimulus intensity

measured at a point external to the receptor.

Information, Sensation and Perception.  Kenneth H. Norwich, 2003.



9. Modeling the H-Function 93

Essentially, upon the above six assumptions, the entropy function was derived. In some applications
of the H-function we shall not require one of either assumptions (4) or (6). In later chapters, we shall
occasionally add an additional assumption, namely that ∆H, a small difference in H, is constant and
plays the part of a threshold.

POPULATION VS. SAMPLE VARIANCE

In order to understand the H concept more clearly, and to understand the limitations of the modeled
H-function given by Equation (9.19), we had best look at some of the intermediary stages of its
development. Looking back at Equation (9.10), we see that for constant σR

2 , the value of H is dependent
upon σS

2 / m, which is the variance of a population of means. However, the perceiving organism does
not have access to the value of σS

2 / m. Rather it must sample the stimulus population and obtain, at best,
the value of the variance of a sample of the population means. That is, the organism measures s2/ m as
an estimator of σS

2 / m. In order to develop a more accurate H function, we should have to make
allowance for the probability distribution of the sample variance, which we shall not do here.

MAXIMUM H AS POTENTIAL INFORMATION

We recall from Equation (9.10),

H = 1
2 ln(1 + σS

2 / mσR
2 ) .     (9.10)

For fixed I, H is seen to be maximum for m = 1. However, if the sensory receptors are sensing
variances rather than means, no sample variance can be obtained for m less than 2. Nonetheless, for
simplicity, let us take

H = Hmax for m = 1 .     (9.21)

Then Hmax, being an absolute entropy, represents the greatest amount of information receivable by
the receptor per stimulus. Remember, though, that Hmax is only received when the mean signal variance
is reduced to zero, leaving only the noise or reference signal variance [recall the (HSN − HN) idea of
Equations (7.18) and (8.14)]. Looking at Equation (9.10), we see that this “ extinction” of the mean
signal variance, σS

2 / m, will only occur for large values of m, the number of samplings made by the
receptor – that is for large t. What transpires is a gradual reduction in the mean signal variance as m
increases – the effects of Fisher’ s information felt here. We might look at Hmax, which we have termed
an absolute entropy or an uncertainty, as the potential of the perceiving system to acquire information.
Potential information is transformed gradually into information as the perceptual act proceeds.

To broaden the perspective, it is interesting to think back to the quantum physical picture outlined
in Chapter 2. Perception of a quantum event occurs as the wave function (the square of whose modulus
is a probability density function) collapses over time, ∆t. That is, in time ∆t, the variance of the
quantum probability density decreases, with the resulting perception of the event. The physiological
event occurs continuously, within the “ paradigm” of classical physics; the wavefunction-mediated
event occurs suddenly, within the paradigm of quantum physics.

THE SENSORY NEURON AS METACHANNEL

The concluding section of Chapter 6 should take on clearer meaning now. We see that the sensory
receptor receives a “ message” or “ statement” from the so-called “ outside world.” 4 Within the context
of the present theory, this statement is never made available to the brain, nor, presumably, to
“ consciousness.” Since the sensory neuronal report, F is equal to kH, and H is the entropy or
uncertainty or potential to receive information, the neuronal report is proportional to the uncertainty of
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Figure 9.2 The different worlds of the receptor, sensory neuron and brain. The “ outside world”
is seen only by the receptor. The brain receives from the sensory neuron only a report
concerning the “ uncertainty” of the receptor about the state of the outside world. From these
reports about uncertainty, the brain must synthesize its picture of the outside world. The cartoon
depicts only the passive phase of perception: from the receptor to the brain. It omits the active
phase of perception, which is the effect of the brain on the receptor.

the receptor about the statement. That is, the neuronal report is a statement about a statement or a
metastatement (Norwich, 1983, 1984).

We see in cartoon fashion in Figure 9.2 a germ of the Berkeleian approach to sensory physiology:
The substance of the world seems forever cut off from the mind that perceives it. We seem to be drawn
ineluctably into the philosophical core; however, I am determined to delay it, so on to ...

F AT THE THRESHOLD

Let us consider the legitimacy of the use of the H-function, as obtained from Equation (9.19), for
small values of I, when used in (9.1), F = kH(I, t ). It is well known that when I is less than some value,
Ithresh, which may have to be determined with due attention to the statistical methods of signal detection
theory, a stimulus is imperceptible. However, since H has been modeled as a continuous, monotone
function of I for all values of I ≥ 0, F will be greater than zero for all values of I greater than zero.
When the perceptual variable, F, is interpreted as subjective magnitude, F > 0 for I < Ithresh is not
acceptable. Clearly, some correction is necessary in Equation (9.1) when I is near threshold,
particularly when dealing with subjective magnitudes. Simplest would seem to be

F = k [H(I, t ) − H(Ithresh, t )] .     (9.22)

This equation would be appropriate if Ithresh assumed the form of a masking stimulus. As we shall see in
the next chapter, Equation (9.22) is in accord with the experimental findings of Lochner and Burger
(1961).5 But later we shall be treating thresholds in a manner quite different from the usual, by
representing them in terms of the minimum quantities of information required to perceive a stimulus or
to discriminate between stimuli; so it is, perhaps, premature to speculate about Equation (9.22). We
shall continue to use Equation (9.20), but with caution or not at all in the proximity of Ithresh. So we
have now issued caveats on the use of certain of our model equations both for very small t and for very
small I.
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INFORMATION-FREE-APPROACH

In Chapter 8 (Information) it was stated that we could, probably, proceed with this entropic
interpretation of perception without using the concept of information at all. We can now see explicitly
how that might be effected. Referring to Equation (9.9), we see that H can be split into its two
components generically:

H = − ∫ pSR ln pSR dx + ∫ pR ln pR dx ,     (9.23)

where pSR is the summated probability density for stimulus and reference. The second integral on the
right-hand side, representing the differential entropy for the reference stimulus, is constant, since pR

depends only on the constant, σR
2 , which has been taken as constant. Therefore, we can write

H = [Differential entropy for stimulus + reference] + λ U ,     (9.24)

where λ U is constant; or

F = kH = k [Differential entropy for stimulus + reference] + λ ,     (9.25)

where λ is constant; or simply

F = kHdiff + λ .     (9.25a)

Hdiff is, of course, decreasing with time due to its argument, σS
2 / t. Written in the above form, the

theory is, in principle, “ information-free,” since the differential entropy is not an information.
Equation (9.25) is of great interest to me because it parallels Boltzmann’ s equation

S = −kBHB     (9.26)

(cf. Equation (6.20)), where HB is Boltzmann’ s H-function (akin to a differential entropy), kB is
Boltzmann’ s constant, and S is physical entropy. Equation (9.26), the equilibrium form for which has
been derived in Chapter 6 [S = kB ln W (Equation 6.21): see Tolman, 1979, page 135], states that,
ignoring additive constants, physical entropy is proportional to Boltzmann’ s H-function both in and out
of equilibrium (ter Haar, 1966, page 27). Boltzmann showed that, due to molecular collisions,

dHB
dt

≤ 0 ,     (9.27)

thus demonstrating through the use of statistical mechanics that the thermodynamic entropy, S, is
non-decreasing (recall the second law of thermodynamics). One cannot but note the parallel:

F [due to its dependence on H(t )] is necessarily non-increasing with increasing time.
S [due to its dependence on HB(t )] is necessarily non-decreasing with increasing time.
We shall return to HB in Chapter 15.

CONVERVATION LAWS AND UNIFICATION

The second part of Chapter 1 was devoted to a discussion of the nature of physical laws and their
capacity to “ unify” the observations of science. The distinction was made between laws of conservation
and laws of mechanism, and I should like to pursue that distinction here in terms of sensory science.
Chapter 3 consists of a survey of many of the empirical rules (or laws) of sensation and perception.
These are rules that have been learned by experience; they are, essentially, codified measurements. Our
job in the next few chapters will be to derive these laws theoretically from Equations (9.19) and (9.20).
That is, we shall try to derive ALL empirical laws that relate a single, constant stimulus of intensity
I > Ithresh, applied for a duration of time t > to, to a selected perceptual variable, F, using the single
theoretical law, F = kH.

Megalomania, perhaps.
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Now, it is important to realize that F = kH is a theoretical law of the conservation type; it is not a
mechanistic law. Please recall that the H-function was derived from considerations of uncertainties
resident in the stimulus. That is, a model of the stimulus was formulated, and an expression for
differential entropy was derived from it. We approached it from the point of view of fluctuations in the
density of quanta. However, stimuli other than those of the “ intensity” type may give rise to other
models for H; the use of a fluctuating density of quanta may not always be appropriate. Some other
quantity may be sampled by the sensory receptor.

We have seen how H measures the potential to deliver information. Neurophysiologically, the
equation F = kH depicts the transformation of that potential stimulus information to the sensory
receptors. Consider a constant stimulus applied to a receptor. When m1 samplings have been made,
H = H1. When m2 samplings have been made, H = H2. Let m2 be greater than m1. Then F1 = kH1,
F2 = kH2, so that

(F1 − F2) / k = H1 − H2 .     (9.28)

We specify that the information H1 − H2 bits is transferred to the receptor, which acknowledges its
receipt by signaling F1 − F2 units of information. When m1 is very small and m2 is very large, so that
H1 → Hmax and H2 → 0, then

Fmax / k = Hmax .     (9.29)

That is, Fmax is proportional to the total stimulus information. If we write, further,

F1 − F2
F1

= H1 − H2
H1

,     (9.30)

we just state that the difference between any two F-values, as a receptor continues to sample its
stimulus, designates the fraction of the total available information transmitted to the receptor at any
m-value or time. So we see that F = kH can be viewed as a kind of conservation law that meters the
flow of information from stimulus to receptor. No more than Fmax / k units of information may be
transmitted from stimulus to receptor.

We observe, though, that no mechanism for the transmitted information is specified; we don’ t know
how the information passed from stimulus to receptor. We recall from Chapter 1 that laws of
mechanism complement laws of conservation. The development and use of F = kH in no way supplants
the search for the principles of operation of sensory receptors – the electrical and mechanical properties
of signal transducers. A fortiori, laws of the type F = kH need laws of mechanism to provide a base for
information transmittal. In the final analysis, knowledge of mechanism will enable us to formulate
improved versions of the H-function, and, perhaps tailor the H-function to each specific type of
receptor. The thrust of the next few chapters, however, will be to show how far we can go without
knowledge of mechanism, using a common mathematical form of the H-function for all modalities of
sensation.

APPENDIX: THE PARABLE OF THE SUPERMARKET

(A Pedagogical Lamentation on the Elusiveness of Friendship)

I suppose my motives might be suspect when I go to the supermarket with almost no money or
plastic at my disposal but with a calculator capable of adding numbers as large as 10500. I proceed to
the fruit section where I note that each species of fruit is piled on its own special table: one table for
grapes, one table for apples, etc. I go to one such table and proceed to weigh nearly every item of fruit
on the table using the scale provided. I enter the weight into the memory on my calculator and then
compute the average weight of a piece of fruit, which I duly record. Before leaving the table, I pick up
one piece of fruit at random, re-weigh it, and record the weight. I then go on to a second table and
repeat the above ritual. I am monopolizing the scales, so I make little grimaces and utter audible
expression of annoyance to signify my dissatisfaction with the whole tableful of fruit, in the hopes of
assuaging the anger of the woman behind me. What does she know of the methods of science?
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I leave the store without buying anything, but brandishing my calculator, and I soon meet a friend
on the street. He tells me how happy he is to meet me, but I suspect that he doesn’ t mean it.
Nonetheless, I decide to pose the following problem to him. I provide him with the weights of the two
pieces of fruit that I have selected at random, but I do not tell him what kinds of fruit they are. I ask him
to guess, for each of the two types of fruit, what the average weight of the fruit on the table was, and to
estimate the “ uncertainty” in his guess of the average. That is, I am really asking him to estimate a sort
of standard deviation of his guess of the average.

Well, the first piece of fruit weighed 5120 grams. My friend guesses that this fruit must have been a
watermelon or pumpkin, estimates the average weight of the species as 5000 grams and his error as ±
2000 grams. The weight of the second piece of fruit was 45 grams. My friend guesses that it must be a
berry of some kind, and estimates the average weight as 50 grams ± 20 grams. His uncertainties about
the average weight are, then, 2000 grams and 20 grams. I suspect that he is burning with curiosity to
know the true values of the means, so I kindly relieve his curiosity by telling him what they were. I
wish to continue the dialogue by showing my friend what wisdom lay inherent in his choices, but he
seems very anxious to go somewhere and I do not wish to detain him. He tells me that we really must
get together some time, but I think he doesn’ t mean it. He leaves before I can teach him the two main
lessons to be learned from the guessing game, but I’ ll tell him next time. Maybe I’ ll send him a letter ...

The first lesson is that when I provided him with the correct answer, his uncertainty “ collapsed” (in
the language of physics), and he received a quantity of information that depended on the magnitude of
his prior uncertainty. We can, in fact, measure this information. The scale that I used in the supermarket
had a resolution of about 5 grams; that is, measurements were accurate within a range of ± 5 grams.
Consider, now, each of the two pieces of fruit which, were, in fact, a pumpkin and a strawberry.

(i) Pumpkin:
estimated error = ± 2000 grams
“ reference weight” or resolution of the scale = 5 grams
call 5 grams a “ resolvable category”
information received = log2 (number of resolvable categories)

= log22000/5 = 8.64 bits.
Perhaps more precisely, since his estimate of error did not take account of the error of the
scale, we can combine errors using the rule for addition of variances. Then,
information received = 1

2 log2[(52 + 20002) / 52]
= 1

2 log2(1 + 20002/ 52)
= 8.64 bits (Pumpkin).

(ii) Strawberry
estimated error = ± 20 grams
“ reference weight” or resolution of the scale = 5 grams
again, call 5 grams a “ resolvable category”
information received = log2 (number of resolvable categories)

= log2(20 / 5) = 2.00 bits
Or, using again the addition of variances,
information received = 1

2 log2[(52 + 202/ 52]
= 1

2 log2(1 + 202/ 52)
= 2.04 bits (Strawberry).

The second lesson, that I did not get the chance to teach my friend, is that he received a greater
quantity of information when I provided him with the correct average weight of the pumpkin than when
I provided him with the correct average weight of the strawberry. Larger measurements are associated
with larger quantities of information. Intrinsically, he knew that when he ascribed a larger error to the
pumpkin estimate than to the strawberry estimate. All this mathematical knowledge was actually
present in my friend’ s mind all along. I just helped him to extract it. Socrates understood such matters
long ago, as we learn in Plato’ s The Meno.

My friend is probably already regretting having treated me in such a distant manner. He is probably
going to call me tonight to apologize. I’ ll have to remind him that, in this Parable of the Supermarket,
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we are not forbidden to compare Equations (Pumpkin) and (Strawberry) to Equation (9.10) with m = 1:

H = HS − HR = 1
2

ln(1 + σS
2 / σR

2 ) .

He’ ll grow warm and friendly with the acquisition of this wisdom. I’ m sure he will.

NOTES

1. Is this equivalent to the existence of an organism that possesses the ability to perceive a
continuum of stimuli, immersed in a world in which stimuli always assume discrete values, like the
eigenfunctions of a quantum mechanical system?

2. I know, when I look at a light signal, that I do not perceive quantal fluctuations. That is, I am not
conscious of such fluctuations. But do the sensory neurons report such fluctuations anyway? I think not.
However, even when a sensory neuron fires at a constant average rate, there are moment by moment
fluctuations in the constant rate (stationary time series). I shall assume, in the absence of knowledge to
the contrary, that these fluctuations in neuronal firing rate do not reflect quantal fluctuations in the
stimulus density although, admittedly, future research may show otherwise. Recall, also, that we are
confining our discussion, for the most part, to stimuli of the “ intensity” type, so phenomena such as
“ phase locking” in pitch perception are not considered here.

3. This relation, σ(na) ∝ n , led Cattell (1893) to his well-known conjecture: “ The algebraic sum
of a number of variable errors tends to increase as the square root of the number ...” Recall also the
generalization of the above by Guilford (1932) into the “ Fullerton-Cattell law,” discussed in Note 6,
Chapter 2. However, it is most important that the reader make the following distinction. In the
development of this entropy theory of perception, we are introducing a mean-variance relationship
(Equation (9.14)) at the level of the stimulus (for example, a relationship between the mean and
variance of the density of odorant molecules). We are not introducing any a priori relationships
between the mean stimulus level and the differential threshold, ∆I, for purposes of obtaining Weber’ s
law. We shall derive Weber’ s law from the general equation of entropy, (9.19). I am grateful to
Professor Harry Lawless for drawing my attention to this situation.

4. Within this entropic view of perception, the meaning of the term “ outside world” is not all that
simple, as shown in Figure 9.2. Since a direct view of the “ outside world” is denied to us, the best we
can do is to formulate a model of this world. This model is one wherein magnitudes of outside-world
events are inferred from the neuronal reports of uncertainties.

5. Lochner and Burger (1961) found for loudness that a function of the form

F = k (In − Ithresh
n )

was much more accurate in describing experimentally measured data than a function of the form

F = k (I − Ithresh)n .

We see in Chapter 10 that, in terms of H, Lochner and Burger’ s findings mean that

F = k [H(I, t ) − H(Ithresh, t )]
is better than

F = k H(I − Ithresh, t ) .

Q. (2003 ed. note) The “ null conjecture” regarding sampling rate by a receptor, introduced at
Equation (9.2) was studied in more detail. The receptor, it seems, samples its stimulus environment
more rapidly when the stimulus first appears, and then progressively more slowly (K. H. Norwich and
W. Wong, “ A Universal Model of Single-Unit Sensory Receptor Action” , Mathematical Biosciences,
125, 83-108, 1995). Using this model, one can account, in a quantitative manner, for neural activity
during rapid onset and removal of stimuli (adaptation and de-adapatation), and for the responses to
time-varying stimuli. Stimuli of this type are not embraced by the theory presented in this book.
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QQ. (2003 ed. note) The term sound intensity, as used in this book, will imply a scalar quantity that
can be measured by the square of the amplitude of a sound wave. More properly used, sound intensity
is a vector quantity discussed, for example, by Frank Fahy, Sound Intensity. E. and Fn. Spon, London,
1995.
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